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a b s t r a c t

This paper proposes a new alternative sufficient condition for the existence, uniqueness and global
asymptotic stability of the equilibriumpoint for the class of delayed neural networks under the parameter
uncertainties of the neural system. The existence and uniqueness of the equilibrium point is proved
by using the Homomorphic mapping theorem. The asymptotic stability of the equilibrium point is
established by employing the Lyapunov stability theorems. The obtained robust stability condition
establishes a new relationship between the network parameters of the system. We compare our stability
result with the previous corresponding robust stability results derived in the past literature. Some
comparative numerical examples together with some simulation results are also given to show the
applicability and advantages of our result.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, dynamical neural networks have received a
great deal of attention due to their potential applications in solving
various classes of engineering problems such as image and signal
processing, associative memory, pattern recognition, parallel
computation, control and optimization.When neural networks are
employed to solve practical engineering problems, their dynamics
must exhibit some certain behaviors depending on the intended
applications. Therefore, equilibrium and stability properties of
neural networks are of great importance in the design of dynamical
neural networks. For instance, if a neural network is designed to
solve the problems in areas of control, optimization and signal
processing, then, this neural network must have a unique and
globally asymptotically stable equilibrium point in the presence
of some certain inputs in order to avoid the risk of suboptimal
responses. Therefore, it is important to design neural networks
with desired stability properties. On the other hand, when a neural
network is applied to solve a real time engineering problem on
an electronically implemented neural networkmodel-based chips,
establishing the desired equilibrium and stability properties of
neural networks becomes more important. It is known that in
the VLSI implementation of neural networks, time delays are
unavoidably encountered during the processing and transmission
of signals, which can significantly affect the dynamical behaviors of
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neural networks. On the other hand, some deviations in the neural
network parameters may happen due to the existence of modeling
errors, external disturbance, and parameter fluctuations, which
would cause the parameter uncertainties. Therefore, we must
take into account the time delays and parameter uncertainties
when studying stability of neural networks, in which case, one
must deal with the robust stability of delayed neural networks.
Recently, global robust stability of various classes of delayed neural
networks have been extensively investigated. In particular, Chen,
Cao, and Huang (2005); Deng, Hua, Liu, Peng, and Fei (2011);
Ensari and Arik (2010); Guo and Huang (2009); Han, Kao, and
Wang (2011); Huang, Li, Mohamad, and Lu (2009); Kwon and Park
(2008); Li, Chen, and Huang (2007); Luo, Zhong, Wang, and Kang
(2009); Mahmoud and Ismail (2010); Pan and Cao (2012); Raja
and Samidurai (2012); Shao, Huang, and Wang (2011); Shen and
Zhang (2007) Shengyuan et al. (2005), Singh (2007);Wang, Liu, Liu,
and Shi (2010); Wu, Su, Chu, and Zhou (2009); Yang, Gao, and Shi
(2009); Zhang, Liu, and Huang (2010); Zheng, Fei, and Li (2012);
Zhou and Wan (2010); Zhu and Shen (2013) have studied the
robust stability of neural networks with discrete and distributed
with constant delays and time varying delays and obtained the
stability conditions in terms linear matrix inequalities (LMIs).
Robust stability of Cohen–Grossberg neural network models
with discrete and distributed time delays has also been studied
in Balasubramaniam and Ali (2010); Bao, Wen, and Zeng (2012);
Huang (2011); Kao, Guo, Wang, and Sun (2012); Li (2009); Su and
Chen (2009); Zhang,Wang, and Liu (2008); Zhang and Zhou (2009).
In some recent papers (Faydasicok &Arik, 2012, 2013a, 2013b; Liao
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& Wong, 2004; Liao, Wong, Wu, & Chen, 2001; Li & Cao, 2004;
Ozcan, 2011; Sun & Feng, 2003; Wang, Zhang, & Yu, 2007), robust
stability of the class of neural networks with multiple time delays
has been investigated and various sufficient conditions have been
established for this type of stability. In case ofmultiple time delays,
the stability results basically impose theM-matrix condition on the
networkparameters, or put some restraints on thenormsof system
matrices. In this paper, we present a new sufficient condition for
the global robust asymptotic stability of neural networks with
multiple time delays. We also make a detailed comparison of our
new result with the previously reported corresponding results by
giving some constructive numerical examples.

The class of neural networks with multiple time delays is
described by the following set of ordinary differential equations

dxi(t)
dt

= −cixi(t)+

n
j=1

aijfj(xj(t))

+

n
j=1

bijfj(xj(t − τij))+ ui, i = 1, 2, . . . , n (1)

where n is the number of the neurons, xi(t) denotes the state of
the neuron i at time t , fi(·) denote activation functions, aij and
bij denote the strengths of connectivity between neurons j and i
at time t and t − τij, respectively; τij represents the time delay
required in transmitting a signal from the neuron j to the neuron
i, ui is the constant input to the neuron i, ci is the charging rate for
the neuron i.

The parameters A = aij and B = bij and C = diag(ci) of
neural system (1) are assumed to be norm-bounded and satisfy the
following conditions:

CI = [C, C] = {C = diag(ci) : 0 < c i ≤ ci ≤ c i, i = 1, 2, . . . , n}

AI = [A, A] = {A = (aij)n×n : aij ≤ aij ≤ aij, i, j = 1, 2, . . . , n} (2)

BI = [B, B] = {B = (bij)n×n : bij ≤ bij ≤ bij, i, j = 1, 2, . . . , n}.

The nonlinear activation functions fi are assumed to be Lipschitz
continuous and satisfy the following condition:

|fi(x)− fi(y)| ≤ ℓi|x − y|, i = 1, 2, . . . , n, ∀x, y ∈ R, x ≠ y

where ℓi > 0 denotes a Lipschitz constant. This class of functions
will be denoted by f ∈ L.

The rest of this paper is organized as follows: In Section 2,
some preliminaries are given. Section 3 presents the condition
for the existence, uniqueness, and global robust stability of
the equilibrium point for system (1). In Section 4, comparative
numerical examples are given to illustrate the effectiveness of the
proposed result and a comparison is made between our result and
the previous literature results. The concluding remarks are given
in Section 5.

2. Preliminaries

Throughout this paper, we will use the following notations: Let
v = (v1, v2, . . . , vn)

T be a real vector and Q = (qij)n×n be a real
matrix. Then, |v| will denote |v| = (|v1|, |v2|, . . . , |vn|)

T and |Q |

will denote |Q | = (|qij|)n×n. The following normswill also be used:

∥v∥1 =

n
i=1

|vi|, ∥v∥2 =

 n
i=1

|vi|
2
1/2

,

∥v∥∞ = max
1≤i≤n

|vi|

∥Q∥1 = max
1≤i≤n

n
j=1

|qji|

∥Q∥2 = [λmax(Q TQ )]1/2

∥Q∥∞ = max
1≤i≤n

n
j=1

|qij|.

The following lemmawill play an important role in the proof of the
main result of this paper:

Lemma 1. Let A be any real matrix defined by

A ∈ AI = [A, A] = {A = (aij)n×n : aij ≤ aij ≤ aij, i, j = 1, 2, . . . , n}.

Then, for any two real vectors x = (x1, x2, . . . , xn)T and y =

(y1, y2, . . . , yn)T , the following inequality holds:

2xTAy ≤ β

n
i=1

x2i +
1
β

n
i=1

piy2i

where β is any positive constant, and

pi =

n
k=1


âki

n
j=1

âkj


i = 1, 2, . . . , n

with âij = max{|aij|, |aij|}, i, j = 1, 2, . . . , n.

Proof of Lemma 1. Let A ∈ AI . Then, for any positive constant
β and for any two real vectors x = (x1, x2, . . . , xn)T and y =

(y1, y2, . . . , yn)T , we can write

2xTAy ≤ βxT x +
1
β
yTATAy

from which it can be derived that

yTATAy =

n
i=1

n
k=1

akiakiy2i +

n
i=1

n
j=i+1

 n
k=1

2akiakjyiyj



≤

n
i=1

n
k=1

|aki||aki|y2i +

n
i=1

n
j=i+1

 n
k=1

2|aki||akj||yi||yj|


≤

n
i=1

n
k=1

|aki||aki|y2i +

n
i=1

n
j=i+1

 n
k=1

|aki||akj|(y2i + y2j )


=

n
i=1

n
k=1

|aki||aki|y2i +

n
1=1

 n
k=1

|aki|
n

j=1
j≠i

|akj|

 y2i

=

n
1=1

 n
k=1

|aki|
n

j=1

|akj|

y2i

A ∈ AI implies that |aij| ≤ âij, i, j = 1, 2, . . . , n. Hence, we obtain

yTATAy ≤

n
1=1

 n
k=1

|âki|
n

j=1

|âkj|

y2i

=

n
i=1

piy2i

where

pi =

n
k=1


âki

n
j=1

âkj


, i = 1, 2, . . . , n.

Hence, it follows that

2xTAy ≤ β

n
i=1

x2i +
1
β

n
i=1

piy2i .
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