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characterizes the diversity of data, resulting in unstableness of the intra-class geometrical structure
representation and not good enough performance of the algorithm. In this paper, a novel approach is

proposed, namely stable locality sensitive discriminant analysis (SLSDA), for dimensionality reduction.
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SLSDA constructs an adjacency graph to model the diversity of data and then integrates it in the objective
function of LSDA. Experimental results in five databases show the effectiveness of the proposed approach.
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1. Introduction

In many problems of computer vision, pattern recognition and
machine learning, one is often confronted with high-dimensional
data. However, many previous works have demonstrated that the
high-dimensional data may have a lower dimensional intrinsic
representation. This leads one to consider methods of dimension-
ality reduction that allow one to represent the data in a lower di-
mensional space. The aim of dimensionality reduction is to find the
intrinsic geometric structure of data manifold. Thus, learning with
the low dimensional manifold structure, or specifically the intrin-
sic topological and geometrical properties of the data manifold, be-
comes a crucial problem. Two of the most prevalent techniques
for this purpose are Principal Component Analysis (PCA) (Jolliffe,
1986) and Linear Discriminant Analysis (LDA) (Belhumeur, Hep-
anha, & Kriegman, 1997; Fukunaga, 1990).

PCA is an unsupervised method. It aims to find the project di-
rections along which the data have the maximum variance. Thus,
PCA preserves the most important information that characterizes
different geometric properties, namely the diversity of data. Dif-
ferent from PCA, LDA is supervised. It searches for the project
axes on which the data points of different class are far from each
other while requiring data points of the same class to be close to
each other. Applied to face recognition and other high-dimensional
data analysis, PCA and LDA have shown to be effective in discov-
ering the geometric structure of image space. However, in real
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applications, natural images usually live in a non-line subspace,
and the large distance data pairs dominate the optimal projection
directions of PCA and LDA. This leads to the impairment of local
geometric structure of images. Thus, they do not well discover the
underlying structure of images (He, Yan, Hu, Niyogi, & Zhang, 2005;
Roweis & Saul, 2000).

Recently, many geometrically motivated approaches, i.e. man-
ifold learning approaches, have been developed for data analysis
in high-dimensional spaces. Three of the most classical approaches
are ISOMAP (Tenenbaum, de Silva, & Langford, 2000), Locally Linear
Embedding (LLE) (Roweis & Saul, 2000), and Laplacian Eigenmaps
(LE) (Belkin & Niyogi, 2003). Both LE and LLE aim to preserve the lo-
cal structure of data manifold. Different from LE and LLE, ISOMAP
aims to preserve the global structure of the data manifold. These
approaches do yield impressive results on some benchmark artifi-
cial datasets. However, both of them yield maps that are defined
only on the training data points and how to evaluate the maps on
new testing points remains unclear. So, these manifold learning
approaches might not be good for some computer vision and ma-
chine learning tasks, such as face recognition, document clustering
(He, Yan et al., 2005; He, Yan, Hu, & Zhang, 2003). To overcome
it, He et al. proposed Locality Preserving Projection (LPP) (He, Yan
et al,, 2005; He et al., 2003), Neighborhood Preserving Embedding
(NPE) (He, Cai, Yan, & Zhang, 2005), and Isometric Projection (IsoP)
(Cai, He, & Han, 2007a) by linear approximation. Both of them
effectively preserve the intrinsic structure of the data and yield
impressive results in face recognition, image retrieval, document
clustering.

Motivated by them and LDA, many manifold learning-based
discriminant approaches have been proposed. They can be roughly
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classified into two categories: local discriminating approaches
and integrating discriminating ones. The most prevalent local
approaches include MFA (Margin Fisher Analysis) (Yan et al., 2007),
LDE (Local Discriminant Embedding) (Chen, Chang, & Liu, 2005),
LFDA (Local Fisher Discriminant analysis) (Sugiyama, 2007), LSDA
(Locality Sensitive Discriminant Analysis) (Cai, He, Zhou, Han, &
Bao, 2007), which was extended by imposing the uncorrelated
constraint (Lu, 2010), DLA (Discriminative Locality Alignment)
(Zhang, Tao, Li, & Yang, 2009), and sparse discriminant approaches
(Lai, Wan, Jin, & Yang, 2011; Wang, 2012). They well preserve
the local intrinsic structure and discriminate structure. Integrating
approaches (Cai, He, & Han, 2007b; Huang, Xu, & Nie, 2012) obtain
well-recognition accuracy by combining local and global geometric
structures of data. Although their motivations are different, both of
them learn the intra-class compact representation by LE (Laplacian
embedding) (Roweis & Saul, 2000). LE can map nearby data points
having the same class label in the original space to nearby data
in the reduced space. In the ideal case, nearby data points with
the same label can be mapped to a single point in the reduced
space. Thus, these approaches only consider the similarity of points
with the same class label and ignore the diversity, which can be
learned by maximizing variance unfolding (Gao, Hao, Zhao, Shen,
& Ma, 2013; Weinberger & Saul, 2006). Moreover, LE may impair
the local topology of data, resulting in unstable intra-class compact
representation (Gao, Liu, Zhang, Gao, & Li, 2013; Gao, Ma, Zhang,
Gao, & Liu, 2013).

Many previous works have demonstrated that diversity among
nearby data is also important for analyzing high-dimensional data
(Gao, Hao et al., 2013; Gao, Liu, Zhang, Hou, & Yang, 2012; Hou,
Zhang, Wu, & Jiao, 2009; Watanabe, Okada, & Ikeda, 2011; Wein-
berger & Saul, 2006). Moreover, in real applications, the intrinsic
geometric structure of data is unknown and complex, and testing
datais usually different from the training data due to many factors.
Thus, only similarity or diversity is not sufficient to represent the
intrinsic geometric structure of data. Motivated by this fact, many
manifold learning-based dimensionality reduction approaches are
proposed by combining similarity and diversity of data. These ap-
proaches can be roughly classified as non-discriminant (Gao, Xu,
Li, & Xie, 2010; Hou et al., 2009) and discriminant approaches (Gao,
Liu et al,, 2013; Gao et al,, 2012; Gao, Ma et al,, 2013; Gao, Zhang,
Yang, Liu, & Liu, 2013). However, these approaches implicitly con-
sider that the within-class and between-class relations are equally
important. This reduces the flexibility of the algorithms.

Motivated by LSDA, we propose a novel linear discriminant
approach, namely stable locality sensitive discriminant analysis
(SLSDA), which explicitly considers the similarity, diversity, and
discriminating information embedded in high-dimensional data
space. To be specific, we construct two adjacency graphs to model
the similarity and diversity of data, respectively. We also construct
the third graph to model the discriminant structure of data and
then incorporate the similarity, diversity, and discriminating infor-
mation into the objective function of linear dimensionality reduc-
tion. In this way, our proposed SLSDA approach well encodes the
discriminating information and simultaneously obtains robust and
stable intra-class compact representation, which will enhance the
recognition accuracy and generalization ability of the algorithm.
Extensive experiments on several image datasets indicate the ef-
fectiveness of our approach.

The rest of this paper is organized as follows. In Section 2, we
provide an in-depth study for LSDA. The Stable Locality Sensitive
discriminant Analysis (SLSDA) approach is introduced in Section 3.
Section 4 gives the theoretical analysis of SLSDA. In Section 5, we
describe some experimental results and analyses. Conclusions are
summarized in Section 6.

2. LSDA

Suppose we have N training samples X1,X3,...,Xy € RP
sampled from the underlying submanifold M; then the within-
class graph in LSDA (Cai, He, Zhou et al., 2007) is constructed by
a vertex set X = {Xxy,X2,...,Xy} and weight matrix W,,. The
subscription w in W,, denotes the within-class. The elements W, ;;
in weight matrix W,, are defined as follows

W — 1, ifx; € Ny (X)) orx; € Ny (x;)
w10, otherwise

where the set N, (x;) contains the points which are the k nearest
neighbors of x; and share the same label with x;.

In LSDA, the within-class compactness can be learned by
Laplacian embedding, i.e.,

(1)
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where y; = ox; is a scale and denotes the one-dimensional map
of x;. « is the projection direction.

The objective function (2) is widely used to characterize the
similarity of local data. However, it results in some disadvantages
in real applications.

First, it leads to unstable intrinsic structure representation. In
the ideal case, the objective function (2) maps all nearby data
points sharing the same class label to a single point in the reduced
space. It means that Eq. (2) only considers the similarity among
nearby data points and ignores the diversity of data, which is
important for data classification (Gao et al., 2012, 2010; Watanabe
et al,, 2011; Weinberger & Saul, 2006). As previously discussed,
only similarity of data is not sufficient to guarantee the stable
intrinsic geometrical representation in the reduced space.

Second, it impairs the local topology of data. In real-world
applications, the data distribution is uneven; thus some nearby
data points may lie on a sparse region, and the distance among
these data points is large. In this case, these data points with large
distance will dominate the objective function (2). Thus, Eq. (2) does
not guarantee that the smaller the distance between nearby data
points is, the closer they should be embedded in the reduced space.
This will impair the local topology of data and lead to the inexact
within-class compact representation. Taking the two-dimensional
data points, which are randomly selected, in Fig. 1 as an example,
we plot the projection direction of Eq. (2) and one-dimensional
embedding results in Fig. 1(a) and (b) respectively. We observe that
Eq. (2) impairs the local topology of data in circle.

Likewise, the between-class graph is constructed by a vertex set
X = {Xq, ..., xy} and weight matrix Wj. The subscription b in W,
denotes the between-class. The elements W}, ;; in weight matrix W,
can be defined as follows

Wi = 1, iin (S] Nb(Xj) orx; € Nb(Xi)
bi=110, otherwise

where the set N, (x;) contains the points which are the k nearest
neighbors of x; and have different class labels.

The between-class graph is used to characterize the between-
class separability by the following objective function

(3)

man Z (vi— J’j)2 W jj. (4)
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The objective function (4) maps nearby data points having dif-
ferent class labels to be far apart in the reduced space. It is easy
to see that the smaller the distance between nearby data points
from different classes is, the more the discriminating information
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