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a b s t r a c t

In this paper, a novel impulsive control law is proposed for synchronization of stochastic discrete complex
networks with time delays and switching topologies, where average dwell time and average impulsive
interval are taken into account. The side effect of time delays is estimated by Lyapunov–Razumikhin
technique, which quantitatively gives the upper bound to increase the rate of Lyapunov function. By
considering the compensation of decreasing interval, a better impulsive control law is recast in terms of
average dwell time and average impulsive interval. Detailed results from a numerical illustrative example
are presented and discussed. Finally, some relevant conclusions are drawn.
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1. Introduction

Consensus has received increasing attention since the collec-
tive dynamical behaviors of complex networks have been a sub-
ject of intensive research with potential applications in physical,
social, biological, and technological fields. In general, complex net-
works aremodeled by a graphwith non-trivial topological features
where every node is an individual element of the whole system
with certain pattern of connections, which are neither entirely reg-
ular nor entirely random (Barabási & Albert, 1999; Strogatz, 2001;
Watts & Strogatz, 1998). These features do not occur in the math-
ematical models of the networks that have been studied in the
past, such as lattices or random graphs, but they do truly exist
in nature. However, the phenomenon of synchronization of large
populations is a challenging problem and requires different hy-
pothesis to be solved. Synchronization processes in populations
of locally interacting elements are in the focus of intensive re-
search. The analysis of synchronizability has benefited not only
from the advance in the understanding of complex networks, but
also has it contributed to the understanding of general emergent
properties of networked systems, such as the Internet, Human and
Robot interaction networks, human collaboration networks, etc. As
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a consequence, many results for synchronization of different com-
plex networks have been extensively studied in the physics and
mathematics literature; e.g. Wang and Chen (2002a), Wu (2003),
Olfati-Saber, Fax, andMurray (2007), Yu et al. (2009), Yu, Chen, and
Lü (2009), Yu, Chen, Lü, and Kurths (2013), Wang, Wang, and Liu
(2010), Wang, Ho, Dong, and Gao (2010), Liang, Wang, Liu, and Liu
(2008), Liang, Wang, and Liu (2009), Zhang, Tang, Fang, and Wu
(2012), Lu and Ho (2010), Lu, Ho, and Cao (2010), Mahdavi, Men-
haj, Kurths, and Lu (2013), Shen,Wang, and Liu (2011), Shen,Wang,
and Liu (2012), Gan (2012), Lü and Chen (2005), Wen, Bao, Zeng,
and Huang (2013), Huang, Li, Yu, and Chen (2009), Wang and Chen
(2002b), Chen, Liu, and Lu (2007), Liu, Lu, and Chen (2011), Guan,
Wu, and Feng (2012), Yang, Cao, and Lu (2012), Liu, Lu, and Chen
(2013), Hu, Yu, Jiang, and Teng (2012), Zhao, Hill, and Liu (2011)
and references therein.

Theoretically, synchronization of a network is mainly con-
tributed by the nodes’ dynamical behaviors connections among the
nodes. Many results have been devoted to the structural charac-
terization and evolution of complex networks. In Wang and Chen
(2002a), the authors studied robustness and fragility of synchro-
nization of scale-free networks through the spectral properties
of the underlying structure. In terms of graph based theoretical
bounds to synchronizability, Wu (2003) mainly focused on the
bounds of its extreme eigenvalues with graph. Global and local
synchronization of coupled networks were discussed in Wen et al.
(2013) and Yu et al. (2009) where different techniques were em-
ployed to address time delays in the system level. The authors
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of Wang, Ho et al. (2010) and Wang, Wang et al. (2010) studied
synchronization of discrete complex networks when the case in-
volves randomly occurred nonlinearities and mixed time-delays.
The bounded H∞ state estimation problem was studied in Shen
et al. (2011) via RLMI method. In addition, synchronizability for
general dynamical networks and fuzzy complex dynamical net-
works were discussed in Lu and Ho (2010) and Mahdavi et al.
(2013).

Meanwhile, to design a control law for synchronization of
complex network, many efforts have been made for this purpose.
In the sense of continuous control law, Lü and Chen (2005)
described a remarkable idea of a time-varying complex dynamical
network model and designed its controlled synchronization
criteria. Stability schemes of delayedneural networkswere studied
by Zhang et al. (2012) in which time-varying impulses have
been modeled. A set of sampled-data synchronization controllers
is designed by utilizing both the Gronwall’s inequality and the
Jenson integral inequality in Shen et al. (2012). Taking account
into the consideration of discontinuous control approach, periodic
intermittent controller (Gan, 2012) and intermittent controller (Hu
et al., 2012) for synchronization of networks with time delays
were investigated through different methods. Lu et al. (2010)
first established a novel concept, namely average impulsive
interval, for the synchronizability analysis of complex networks. By
introducing intermittent linear state feedback, Huang et al. (2009)
studied problems of cluster synchronization of linearly coupled
complex networks and synchronization of delayed chaotic systems
with parameter mismatches, respectively. Hybrid adaptive and
impulsive control (Yang et al., 2012) was exploited for stochastic
synchronization of complex networks. In addition, as known,
certain complex networks display a scale-free feature, of which
the connectivity distributions have the power-law form. The
pinning scheme of the most highly connected nodes induced that
a significant reduction in required controllers as compared to the
traditional control scheme, see Wang and Chen (2002b). More
general cases of pining control can be found in Yu et al. (2009),
Yu et al. (2013). A single controller of pinning synchronization was
designed, for example, without assuming symmetry, irreducibility,
or linearity of the couplings, the authors (Chen et al., 2007)
proved that a single controller can pin a coupled complex
network to a homogeneous solution. By considering the average
impulsive interval, some generic mean square stability criteria of
synchronization controlwere derived in Lu et al. (2010). Obviously,
these methods are effective for the synchronization control of
different complex networks.

In the practical network environment, information exchange
of each node through communication channels often experiences
link failures and transmission delay, which can bemodeled by a se-
quence of switching interconnections with time delays as shown
in Liu et al. (2011) and Olfati-Saber et al. (2007). Synchroniza-
tion problems with respect to switched systems were studied by
typical techniques, for instance, the multiple v-Lyapunov function
method (Zhao et al., 2011). As aforementioned in Lu et al. (2010)
and Yang et al. (2012), by average impulsive interval, it can be de-
rived that a unified synchronization criterion of complex networks
is less conservative no matter desynchronizing or synchronizing
impulses. Likewise, by average dwell time (Vu &Morgansen, 2010;
Zhang & Shi, 2009), the stability criterion of switched system is
less conservative. If we can obtain the result by virtue of the re-
lationship between average impulsive interval and average dwell
time, it would bemuch less conservative than the previous results.
The research undertaken so far in order to understand how syn-
chronization phenomena are affected by impulsive control law and
the topological substrate of interactions, especially, when complex
networks are involving noisy disturbances. The main goal of this
paper is to examine the effect of time delays in switching topolo-
gies exerting on synchronization through Lyapunov–Razumikhin

technique. Correspondingly, the major contributions in this paper
are twofold. First, the relationship between average impulsive in-
terval(AII) of control law and average dwell time(ADT) of switched
topologies is established. Second, the average time approach pre-
sented in this paper offers attractive features that are potentially
useful for controlling different categories of complex networks.

The paper is organized as follows. We first introduce the basic
mathematical descriptions of discrete complex networks that will
be used henceforth. Next, we focus on the synchronization analysis
of discrete complex networks through impulsive control in the
sense of average dwell time. The effect of time delays is tackled
by Lyapunov–Razumikhin technique. Section 4 is devoted to the
analysis of the conditions for the synchronization of complex
networks in the sense of average interval time. The relationship
is established by means of the results in Section 3. In Section 5, we
present a numerical example and the discussion on the tradeoff
between AII and ADT is given. Finally, the last section rounds off
the paper by giving our conclusions.

2. Preliminary

Let Rd denote the d-dimensional Euclidean space and ∥ • ∥

be the Euclidean norm in Rd. Denote Z+ = {1, 2, . . .}, Zτ =

{−τ ,−τ+1,−τ+2, . . . ,−1, 0}, the finite setH = {1, 2, . . . ,H}

with finite positive integer H , N = {0, 1, 2, . . .}, I be the identity
matrix, and matrix X > 0 (<,≥,≤)means that X is a symmetric
positive definite matrix (negative definite, positive semi-definite,
negative semi-definite, respectively). Denote themaximum eigen-
value and minimum of the matrix by λmax(•) and λmin(•). The su-
perscript T stands for matrix transposition. The Kronecker product
of matrices Q ∈ Rm×nand P ∈ Rp×q is a matrix in Rmp×nq denoted
as Q ⊗ P . Matrices, if not explicitly stated, are assumed to have
compatible dimensions. The notation ⌈x⌉ stands for the minimal
integer not less than x.A .

= BmeansA is denoted byB. As the defini-
tion in Liang et al. (2009, 2008), let (Ω,F ,P ) be a complete prob-
ability space with a natural filtration {Ft}t≥0 satisfying the usual
conditions (i.e., the filtration contains all -null sets and is right con-
tinuous) and by Brownian motion{ω(s) : 0 ≤ s ≤ t}, where we
associate Ω with the canonical space generated by ω(t), and de-
note F the associated σ -algebra generated by ω(t) with all the
probability measure P . L2F0

([−τ , 0],Rd) is the family of all F0-
measurable C([−τ , 0],Rd)-valued random variable. E{•} stands
for the mathematical mean expectation operator with respect to
the given probability measure P .

Consider the following stochastic discrete time-varying com-
plex networks with N identical nodes involving time delays and
switching topology:

xi(k + 1) = f (k, xi(k))+

N
j=1

lij.σ (k)Γ xj(k − τ(k))

+ gi(k, xi(k))ω(k), (1)

where xi(k) = (xi,1(k), xi,2(k), . . . , xi,d(k))T ∈ RNd represents the
state vector of the ith node at each instant of time k and d denotes
the number of nodes affiliated to each sub-networks. f : Z+ ×

Rd
→ Rd is a nonlinear vector function which stands for different

dynamical behavior of each node. Γ = diag{γ1, γ2, . . . , γd} > 0
is the inner coupling matrix between two connected nodes. τ(k)
is a nonnegative constant which represents the time-delay of the
signal transmitted from the network to the ith node, where the
coupling time-delay τ(k) satisfies 0 ≤ τ(k) ≤ τ for a constant
τ > 0. gi : Z×Rd

→ Rd is the noise intensity function vector.ω(k)
is a scaleWiener process (Brownianmotion) defined on (Ω,F ,P )
with

E{ω(k)} = 0, E{ω(k)2} = 1,
E{ω(i)ω(j)} = 0, (i ≠ j). (2)
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