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a b s t r a c t

Concept factorization (CF) is a variant of non-negative matrix factorization (NMF). In CF, each concept
is represented by a linear combination of data points, and each data point is represented by a linear
combination of concepts. More specifically, each concept is represented by more than one data point
with different weights, and each data point carries various weights called membership to represent
their degrees belonging to that concept. However, CF is actually an unsupervised method without
making use of prior information of the data. In this paper, we propose a novel semi-supervised concept
factorization method, called Pairwise Constrained Concept Factorization (PCCF), which incorporates
pairwise constraints into the CF framework. We expect that data points which have pairwise must-
link constraints should have the same class label as much as possible, while data points with pairwise
cannot-link constraintswill have different class labels asmuch as possible. Due to the incorporation of the
pairwise constraints, the learning quality of the CF has been significantly enhanced. Experimental results
show the effectiveness of our proposed novel method in comparison to the state-of-the-art algorithms on
several real world applications.

Crown Copyright© 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

In many data analysis tasks of data mining, machine learn-
ing and pattern recognition, we often need to deal with the data
in high-dimensional space. Traditional methods which perform
well in low-dimensional space may break down partly in high-
dimensional space (Fodor, 2002; Hua & He, 2011). Therefore,
seeking a suitable low-dimensional representation for the high-
dimensional data is becoming more and more important, and di-
mensionality reduction has been used as a principled way to do
that. Many dimensionality reduction techniques can be expressed
as matrix factorization problems with different objective func-
tions.Matrix factorization aims to find twoormorematriceswhose
product provides a good approximation to the original matrix. In
matrix factorization the dimensions of the factorized matrices are
generally much smaller than those of the original one. One hopes
that important characteristics of the data points in the original
space can be reserved in the low dimensional space. After matrix
factorizationwe can use the low dimensionalmatrices to deal with
classification or clustering tasks.

Among existing matrix decomposition methods, Non-negative
Matrix Factorization (NMF) (Lee & Seung, 1999) can be used to
obtain new representations of the data points with non-negative
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constraints. That is, it requires that all elements of the decomposed
matrix factors are non-negative. These non-negative constraints
lead to parts-based representations of the objects because they
only allow additive, not subtractive, combinations of the original
data points. NMF is a helpful dimensionality reductionmethod for
face recognition (Guillamet & Vitria, 2002), document clustering
(Xu, Liu, & Gong, 2003), image processing (Kim & Park, 2008) and
computer vision (Shashua &Hazan, 2005). However, one drawback
of NMF is that it can only be used in the original feature space of
the data, and thus cannot make use of the power of kernelization
(Hua & He, 2011).

To overcome the drawback of NMF and inherit all its strengths,
Xu and Gong proposed the Concept Factorization (CF) algorithm
(Xu & Gong, 2004). In CF, each concept is represented by a linear
combination of the data points, and each data point is represented
by a linear combination of the concepts. With this model, the
data clustering task is accomplished by computing the two sets
of linear coefficients, and this linear coefficients computation is
carried out by finding the non-negative solution that minimizes
the reconstruction error of the data points. The major advantage
of CF over NMF is that the powerful idea of the kernel method can
be applied to CF; with the kernel function, CF can map the linearly
non-separable data in the original space into linearly separable
data in the transformed high-dimensional space.

However, CF is an unsupervised learning method. That is, CF
does not use any prior knowledge of the data to guide the learning
process; nevertheless, there is a certain amount of prior knowledge
in the real world applications. Using prior knowledge of the
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problem in hand to improve the performance of the algorithms has
become one of the hot areas of machine learning. Many machine
learning researchers have pointed out that when a small amount
of labeled data is used in conjunction with unlabeled data, it
can produce encouraging improvement in learning performance
(Chapelle, Schölkopf, & Zien, 2006; Grira, Crucianu, & Boujemaa,
2005; He, Zheng, Hu, & Kong, 2011; Yang, Jin, & Sukthankar,
2008; Zhang & Yeung, 2008). Even though, it is infeasible to label
all the sample points in the data set, because the cost will be
high expensive, whereas obtaining a small amount of labeled
data is relatively inexpensive. Under these circumstances, semi-
supervised learning algorithms can play a greater performance.
CF can be extended to semi-supervised manner to enhance the
learning quality.

Recently, the manifold learning method (Zhang, Wang, & Zha,
2012; Zhang, Zha, & Zhang, 2008) has also been incorporated
into CF. Cai, He, and Han (2011) had proposed a Locally
Consistent Concept Factorization (LCCF) algorithm which encoded
the geometrical information of the data space by constructing
a nearest neighbor graph to model the local manifold structure.
When the label information is provided, it can be directly encoded
into the graph structure. For example, if two points have the
same label, the algorithm assigns a large weight to the edge
connecting them. Otherwise, if two points possess different labels,
the corresponding weight of the edge is encoded to be 0. In doing
so, LCCF turns into a semi-supervised learning algorithm. Themain
drawback of this algorithm is that it only focuses on the local
structure in the data, whichmay often lead to over-fitting. Besides,
it is hard to fix the nearest neighbor number of one point when
constructing the nearest neighbor graph of the data and select the
weights between the neighbor points.

Liu, Wu, Li, Cai, and Huang (2012) proposed a Constrained Non-
negative Matrix Factorization (CNMF) approach which used the
label information as additional hard constraints. The central idea
of their algorithm is that the data points with the same class
label must be strictly mapped to share the same representation
in the new parts-based representations space. The method forces
the new parts-based representations to have the consistent label
information with the original data. Obviously, this requirement
is too strict so that it will weaken the representational ability of
the new parts-based representations space for other unlabeled
data, because it might assign unlabeled data with totally wrong
representations due to its strictly hard constraints. Kulis, Basu,
Dhillon, and Mooney (2005) had proposed a Semi-supervised
Kernel Kmeans (SSKK) method which constructed a similarity
matrix to clustering; the penalty weights were incorporated into
the similarity matrix according to pairwise constraints. A major
disadvantage is that the similarity matrix adjusting to the penalty
weights is defined in advance; it cannot be adjusted automatically
in the clustering process to enhance or diminish the similarity
among data points.

In this paper, we propose a novel semi-supervised concept
factorization method, called Pairwise Constrained Concept Fac-
torization (PCCF), which uses the pairwise must-link and cannot-
link constraints as additional soft constraints which are generated
among the labeleddata points. Pairwise constraints have beenused
in semi-supervised learning (Li, Liu, & Tang, 2008); however, to our
knowledge, they have not been incorporated into the CF frame-
work. The central idea of our approach is that the data points hav-
ing pairwisemust-link constraints should have the same class label
as much as possible. On the contrary, the data points with pair-
wise cannot-link constraints should have different class labels as
much as possible. To achieve this, we carefully design a new con-
cept factorization objective function incorporating the pairwise
constraints information into it. We also develop an optimization
scheme for the objective function to derive the iterative updating

rules of the two matrices W and V, the computational complex-
ity of our algorithm is qualitatively analyzed, and the convergence
proof of our algorithm is provided. Our experimental evaluations
show that the proposed approach achieves good performance and
outperforms other state-of-the-art methods.

2. A brief review of NMF and CF

Given a set of sample points, we form a data matrix X =
[x1, x2, . . . , xn] ∈ Rm×n

; xj (j = 1, . . . , n) is an m-dimensional
non-negative vector, denoting the jth sample point. NMF aims to
factorize X into the product of two non-negative matrices U and V,
such that the product of U and V is a good approximation to the
original matrix.

X ≈ UVT . (1)

In order to obtain the two non-negative matrices U and V, we can
quantify the quality of the approximation by using a cost function
with some distance metric. For example, if the Euclidean distance
between two matrices is used, the problem turns to minimize the
following objective function.

J = ∥X− UVT
∥
2
=

m
i=1

n
j=1


xij −

k
c=1

uicvjc

2

(2)

where ∥ · ∥ is the matrix Frobenius norm denoting the square
root of the squared sum of all the entries in the matrix. The
dimensions of the factorized matrices U and V are m × k and
n × k, respectively. Usually, k is chosen such that k ≪ min{m, n}.
Each column vector uc of matrix U can be regarded as a basis
of the new representations space (Das Gupta & Xiao, 2011; Xu
& Gong, 2004), while each row vector of matrix V contains the
coefficients of a linear combination of the column vectors of U;
the linear combination of the columns of the matrix U with the
jth row vector of the matrix V is used to approximate the jth
column vector xj of the matrix X. In fact, the jth row vector of
the matrix V is the low-dimensional representation of the original
high-dimensional data xj. The new representations space only
contains k bases which is much less than the dimension of the
original space. As k ≪ min{m, n}, the high-dimensional vector is
represented by a low-dimensional vector in the low-dimensional
coordinate space. One expect that through this process, a lot of
redundant information can be removed from the original data, and
the underlying structure in the original data can be captured. In
contrast to other dimension reduction methods such as PCA and
LDA, the factorized matrices are not allowed to contain negative
entries and only permitted the non-negative combination of the
basis vectors in the new representations space, this is why NMF
can be treated as parts-based representations method.

NMF can only be used in the original feature space of the data;
when the data are highly non-linear distributed, it cannotmakeuse
of the power of kernelization. To overcome this drawback of NMF,
Xu and Gong (2004) proposed Concept Factorization (CF) which
is an extension of NMF. In CF, each basis uc which is the center
of concept c is modeled as a linear combination of the data point
vectors xj, and each data point is modeled as a linear combination
of the basis vectors, that is

uc =

n
j=1

wjcxj (3)

xj =
k

c=1

vjcuc (4)

where j = 1, 2, . . . , n,uc is the basis vector, also called the center
of concept c, c = 1, 2, . . . , k. wjc is a non-negative weight to
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