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phenomenon in terms of this view and illustrate the underlying mechanism with artificial examples.
We also use it to derive the constrained natural actor-critic algorithm that can interpolate between
the aforementioned approaches. In addition, it has been suggested in the literature that the oscillation
phenomenon might be subtly connected to the grossly suboptimal performance in the Tetris benchmark
problem of all attempted approximate dynamic programming methods. Based on empirical findings,
we offer a hypothesis that might explain the inferior performance levels and the associated policy
degradation phenomenon, and which would partially support the suggested connection. Finally, we
report scores in the Tetris problem that improve on existing dynamic programming based results by an
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1. Introduction

We consider the reinforcement learning problem in which one
attempts to find a good policy for controlling a stochastic non-
linear dynamical system. Many approaches to the problem are
value-based and build on the methodology of simulation-based
approximate dynamic programming (Bertsekas, 2005; Bhatnagar,
Sutton, Ghavamzadeh, & Lee, 2009; Busoniu, Babuska, De Schut-
ter, & Ernst, 2010; Peters & Schaal, 2008; Sutton & Barto, 1998;
Szepesvari, 2010). In this setting, there is no fixed set of data to
learn from, but instead the target system, or typically a simulation
of it, is actively sampled during the learning process so as to obtain
the information needed for policy improvement. The sampling pol-
icy is often chosen to be the current policy itself or some slightly
perturbed variation of it. This learning setting is often described as
interactive learning (e.g., Szepesvari, 2010, Section 3).

The majority of these methods can be categorized into greedy
value function methods (critic-only) and value-based policy
gradient methods (actor-critic) (e.g., Konda & Tsitsiklis, 2004;
Szepesvari, 2010). The former approach, although fast, is suscep-
tible to potentially severe policy oscillations in the presence of ap-
proximations. This phenomenon is known as the policy oscillation
(or policy chattering) phenomenon (Bertsekas, 2011; Bertsekas &
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Tsitsiklis, 1996). The latter approach has better convergence guar-
antees, with the strongest case being for Monte Carlo evaluation
with ‘compatible’ value function approximation. In this case, con-
vergence w.p.1 to a local optimum can be established under mild
assumptions (Konda & Tsitsiklis, 2004; Peters & Schaal, 2008; Sut-
ton, Mcallester, Singh, & Mansour, 2000).

Bertsekas has recently called attention to the currently not well
understood policy oscillation phenomenon (Bertsekas, 2011). He
suggests that a better understanding of it is needed and that such
understanding “has the potential to alter in fundamental ways our
thinking about approximate DP”. He also notes that little progress
has been made on this topic in the past decade (see also Sutton,
1999). In this paper, we will try to shed more light on this topic.
The motivation is twofold. First, the policy oscillation phenomenon
is intimately connected to some aspects of the learning dynamics
at the very heart of approximate dynamic programming; the lack
of understanding in the former implies a lack of understanding in
the latter. In the long run, this state might well be holding back
important theoretical developments in the field. Second, methods
not susceptible to oscillations have a much better suboptimality
bound (Bertsekas, 2011), which gives also immediate value to a
better understanding of oscillation-predisposing conditions.

The involved problematic aspects of the learning dynamics
arise from the interactive nature of the setting, in which the
available set of information about the target system changes
during learning in a way that depends on the learning process
itself. The sampling distribution is conditional on the current
intermediate solution (the current policy), which in turn is based
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on the currently available set of information about the target
system. This set of information, again, depends on the sampling
distribution. The resulting learning timescale feedback loop is a
source of considerable complications for establishing convergence
in the presence of approximations (e.g., in the presence of value
function approximation or imperfect state estimation). Solving a
control problem under such approximations using sampled data
will give different solutions for different sampling distributions,
just as fitting a low-capacity function approximator to high
information content data will give different results for different
subsets of the data. The target system will appear as changing
during the learning process, suggesting different solutions on
different moments due to the current policy being changed. In
a sense, the question changes whenever the answer is updated.
This can become a problem with respect to stability in the case of
incautious exploitation (instantaneous over-use) of momentarily
perceived opportunities. It is possible that there are such pairs
(or groups) of policies that lead to such samples and (an implicit)
model that always suggest the other policy as the optimal one.

The policy oscillation phenomenon is strongly associated
in the literature with the popular Tetris benchmark problem.
This problem has been used in numerous studies to evaluate
different learning algorithms (see Szita & Lorincz, 2006; Thiery
& Scherrer, 2009a). Several studies, including those by Bertsekas
and Ioffe (1996), Desai, Farias, and Moallemi (2009), Farias and
Van Roy (2006), Kakade (2002), Petrik and Scherrer (2008),
Szita and Loérincz (2006), Thiery and Scherrer (2009b), have
been conducted using a standard set of features that were
originally proposed by Bertsekas and loffe (1996). This setting
has posed considerable difficulties to some approximate dynamic
programming methods. Impressively fast initial improvement
followed by severe degradation was reported by Bertsekas and
loffe (1996) using a greedy approximate policy iteration method.
This degradation has been taken in the literature as a manifestation
of the policy oscillation phenomenon (Bertsekas & loffe, 1996;
Bertsekas & Tsitsiklis, 1996).

Policy gradient and greedy approximate value iteration meth-
ods have shown much more stable behavior in the Tetris prob-
lem (Kakade, 2002; Petrik & Scherrer, 2008), although it has
seemed that this stability tends to come at the price of speed (see
esp. Kakade, 2002). Still, the performance levels reached by even
these methods fall way short of what is known to be possible. The
typical performance levels obtained with approximate dynamic
programming methods have been around 5000 points (Bertsekas
& loffe, 1996; Bertsekas & Tsitsiklis, 1996; Farias & Van Roy, 2006;
Kakade, 2002), while an improvement to around 20,000 points
has been obtained by Petrik and Scherrer (2008) by considerably
lowering the discount factor. On the other hand, performance lev-
els between 300,000 and 900,000 points were obtained recently
with the very same features using the cross-entropy method (Szita
& Lorincz, 2006; Thiery & Scherrer, 2009b). It has been hypothe-
sized by Bertsekas (2011) that this grossly suboptimal performance
of even the best-performing approximate dynamic programming
methods might also have some subtle connection to the oscilla-
tion phenomenon. In this paper, we investigate also these potential
connections.

The structure of the paper is as follows. After providing a back-
ground in Section 2, we discuss the policy oscillation phenomenon
in Section 3 along with three examples, one of which is novel and
generalizes the others. We develop a novel view to the policy os-
cillation phenomenon in Sections 4 and 5. We validate the view
also empirically in Section 6, after which we proceed to look for
the suggested connection between the oscillation phenomenon
and the convergence issues in the Tetris problem. In Section 6.2,
we report empirical evidence that indeed suggests a shared expla-
nation to the policy degradation observed by Bertsekas and loffe
(1996), Bertsekas and Tsitsiklis (1996) and the early stagnation of
all the rest of the attempted approximate dynamic programming
methods.

2. Background

A Markov decision process (MDP) is defined by a tuple M = (4,
A, P, 1), where 8 and 4 denote the state and action spaces. S; € 4§
and A; € A denote random variables on time t, and s, s’ € 4 and
a, b € A denote state and action instances. £ (s, a,s’) = P(S¢y1 =
s'|S; = s, A, = a) defines the transition dynamics and r(s, a) € R
defines the expected immediate reward function. A (soft-)greedy
policy 7*(als, Q) is a (stochastic) mapping from states to actions
and is based on the value function Q. A parameterized policy
m(als, 8) is a stochastic mapping from states to actions and is
based on the parameter vector 6. Note that we use 7 * to denote a
(soft-)greedy policy, not an optimal policy. The action value func-
tions Q (s, a) and A(s, a) are estimators of the y-discounted cumu-
lative reward Y, ¥'E[r(S¢, A)|So = s,Ao = a, ] that follows
some (s, a) under some 7. The state value function V (s) is an esti-
mator of such cumulative reward that follows some s.

In policy iteration, the current policy is fully evaluated, after
which a policy improvement step is taken based on this evaluation.
In optimistic policy iteration, policy improvement is based on an
incomplete evaluation. In value iteration, just a one-step lookahead
improvement is made at a time.

In greedy value function reinforcement learning (e.g., Bertsekas,
2005; Busoniu et al., 2010), the current policy on iteration k is
usually implicit and is greedy (and thus deterministic) with respect
to the value function Q4 of the previous policy:

1 ifa=argmaxQx_1(s, b)
b

7*(als, Q1) = (1)

0 otherwise.

Improvement is obtained by estimating a new value function
Qy for this policy, after which the process repeats. Soft-greedy
iteration is obtained by slightly softening 7 * in some way so that
w*(als, Qe—1) > 0, Va, s, the Gibbs soft-greedy policy class with a
temperature 7 (Boltzmann exploration) being a common choice:

¥ (als, Qe—1) oc e%-1C-0/T, (2)

We note that (1) becomes approximated by (2) arbitrarily closely
as T — 0 and that this corresponds to scaling the action values
toward infinity.

A common choice for approximating Q is to obtain a least-
squares fit using a linear-in-parameters approximator Q with the
feature basis ¢*:

Q(s, a, we) = wy ¢*(s, @) = Q(s, a). 3)

For the soft-greedy case, one option is to use an approximator
that will obtain an approximation of an advantage function. The
use of an advantage value function, in which the action values
are centered around some per-state reference value, was analyzed
in-depth first in Baird (1993). For a related analysis of optimal
baselines, see Peters (2007, Section 4.3.2) and references therein.
We use the following definition from Sutton et al. (2000):

Ats, @, wp) = ] <¢*(s, @) — Y7 (bls, Awi-)) 76, b))
b

~ Ai(s, a). (4)

Convergence properties depend on how the estimation is per-
formed and on the function approximator class with which Q
is being approximated. For greedy approximate policy iteration
in the general case, policy convergence is guaranteed only up
to bounded sustained oscillation (Bertsekas, 2005). Optimistic
variants can permit asymptotic convergence in parameters, al-
though the corresponding policy can manifest sustained oscilla-
tion even then (Bertsekas, 2005, 2011; Bertsekas & Tsitsiklis, 1996).
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