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a b s t r a c t

The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal
brain data (STBD) are themost commonly collected data formeasuring brain response to external stimuli.
An enormous amount of such data has been already collected, including brain structural and functional
data under different conditions,molecular and genetic data, in an attempt tomake a progress inmedicine,
health, cognitive science, engineering, education, neuro-economics, Brain–Computer Interfaces (BCI), and
games. Yet, there is no unifying computational framework to deal with all these types of data in order to
better understand this data and the processes that generated it. Standard machine learning techniques
only partially succeeded and they were not designed in the first instance to deal with such complex data.
Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of
spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computa-
tional framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG,
and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational
principle that generates STBD, namely spiking information processing. This paper introduces a new SNN
architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A
NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional
areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the
form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model
learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories)
of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if
only part of the input STBDor the stimuli data is presented, thus acting as an associativememory. TheNeu-
Cube framework can be used not only to discover functional pathways from data, but also as a predictive
systemof brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure
of amodel after training can reveal important spatio-temporal relationships ‘hidden’ in the data. NeuCube
will allow the integration in onemodel of various brain data, information and knowledge, related to a sin-
gle subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification
of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy
of STBD classification than standard machine learning techniques. They are robust to noise (so typical in
brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain
conditions under which data was collected. Future directions for the use of SNN for STBD are discussed.

© 2014 Elsevier Ltd. All rights reserved.

1. Spatio/spectro-temporal information processes in the brain

1.1. Spatio-temporal information processes in the brain

The brain is a complex integrated spatio-temporal information
processing machine. An animal or a human brain has a range of
structural and functional areas that are spatially distributed in a
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constrained 3D space. When the brain processes information, ei-
ther triggered by external stimuli, or by inner processes, such
as visual, auditory, somatosensory, olfactory, control, emotional,
environmental, social, or all of these stimuli together, complex
spatio-temporal pathways are activated and patterns are formed
across the whole brain. For example, ‘. . . the language task involves
transfer of stimulus information from the inner ear through the
auditory nucleus in the thalamus to the primary auditory cortex
(Brodmann’s area 41), then to the higher-order auditory cortex
(area 42), before it is relayed to the angular gyrus (area 39). . . ’ (Be-
nuskova & Kasabov, 2007). Many other studies of spatio-temporal
pathways in the brain have been conducted, e.g. birdsong learning
(Hahnloser, Wang, Nager, & Naie, 2008).
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Fig. 1. Different ‘levels’ of information processing in the brain.
Source: From Kasabov (2007).

In principle, different ‘levels’ of spatio-temporal information
processing can be observed in the brain, e.g. Fig. 1 (Kasabov, 2007),
all ‘levels’ acting in a concert. STBD related to each of these ‘levels’
can be collected, but how do we integrate this information in a
machine learning model?

1.2. Spatio-temporal brain data and brain atlases

Different types of STBD have been collected at the different ‘lev-
els’ from Fig. 1. At the highest, cognitive level, the most common
types are EEG,MEG, fMRI, DTI, NIRS. Electroencephalography (EEG)
is the recording of electrical signals from the brain by attaching sur-
face electrodes to the subject’s scalp (Craig & Nguyen, 2007; Lotte,
Congedo, Lécuyer, Lamarche, & Arnaldi, 2007). These electrodes
record brain waves which are electrical signals naturally produced
by the brain. EEGs allow researchers to track electrical potentials
across the surface of the brain and observe changes taking place
over a fewmilliseconds. EEG data is spatio/spectro-temporal in the
high frequency spectrum.

Functional MRI (fMRI) combines visualization of the brain
anatomy with the dynamic image of brain activity into one com-
prehensive scan (e.g. Broderson et al., 2011, 2012; De Charms, 2008
andMitchel et al., 2004). This non-invasive techniquemeasures the
ratio of oxygenated to deoxygenated hemoglobin which have dif-
ferent magnetic properties. Active brain areas have higher levels
of oxygenated hemoglobin than less active areas. An fMRI scan can
produce images of brain activity at the time scale of seconds with
precise spatial resolution of about 1–2 mm. Thus, fMRI provides
both a 3D anatomical and functional view of the brain in the lower
frequency spectrum.

Other methods for whole brain data recording include MEG,
DTI (Diffusion Tensor Imaging), single unit electrode data and
others (Toga, Thompson, Mori, Amunts, & Zilles, 2006). Magne-
toencephalography (MEG) measures millisecond-long changes in
magnetic fields created by the brain’s electrical currents. MEG
machines use a non-invasive, whole-head, 248-channel, super-
conducting-quantum-interference-device (SQUID) to measure small
magnetic signals reflecting changes in the electrical signals in the
human brain. New methods for brain data collection are being de-
veloped and this area of research is likely to be further developed
in the future.

Several structural brain atlases have been created to support
the study of the brain and to better structure brain data. Probably
the first attempt was made by Korbinian Brodmann, who created
a cytoarchitectonic map of the human brain, published in 1909.
The map presents 43 distinctive areas of the cerebral cortex. Each
Brodmann area (BA) is characterized by a distinct type of cells, but
it also represents distinct structural area, distinct functional area
(e.g. BA17 is the visual cortex), distinctmolecular area (e.g. number

of neurotransmitter channels) (Zilles & Amunts, 2010). EEG and
fMRI data are often mapped into BA for a better interpretation of
results (Eickhoff et al., 2005).

An important contribution to the overall brain study and partic-
ularly to brain data analysis is the creation of a common coordinate
system that can be used for a standardized study of brain data from
different subjects and collected by different methods. Talairach
and Tournoux (1988) created a co-planar 3D stereotaxic atlas of
the human brain (Fig. 2(a)). A software was also made available,
called The Talairach Daemon (www.talairach.org) to calculate the
Talairach coordinates (x, y, z) of any given point in a brain image
alongwith the correspondingBAs (Fig. 2(b)) (Lancaster et al., 2000).

While the Talairach Atlas was derived from the analysis of a
single brain, much further development in stereotaxic mapping
was achieved with the introduction of the Montreal Neurological
Institute (MNI) coordinates, based on averaged MRI data across
individuals, e.g. MNI152, MNI305 (Evans et al., 1993). Mapping of
standard brain stereotaxic coordinates was further developed by
the International Consortium for Brain Mapping (ICBM) with the
release of several brain map templates, such as: ICBM452; ICBM
Chinese56; ICBM AD (Alzheimer Disease); MS (multiple sclerosis)
and others (Toga et al., 2006). Brain activity measurements, such
as EEG and fMRI of any subject can be represented in standard
MNI coordinates. MNI coordinates can be translated into Talairach
coordinates and Brodmann Areas, and vice versa. The brain gene
atlas, discussed further below, contains gene expression data
collected from brain areas with identified MNI coordinates. MNI
is a common standard now supported by many software systems,
e.g. SPM (Ashburner, 2009).

At the lowest ‘level’ of information processing in the brain
(Fig. 1) is the molecular information processing. Spatio-temporal
activity in the brain depends on the internal brain structure, on
the external stimuli and also very much on the dynamics at gene–
protein level. This complex interaction is addressed through com-
putational neurogenetic modeling (Benuskova & Kasabov, 2007).
The first issue is how to obtain gene data related to brain structures
and functions. The Brain Atlas (www.brain-map.org) of the Allen
Institute for Brain Science (www.alleninstitute.org) has shown that
at least 82% of the human genes are expressed in the brain. For al-
most 1000 anatomical brain areas of two healthy subjects, 100M
data pointswere collected that indicate gene expressions of several
thousand genes and underlie the biochemistry of the sites (Hawry-
lycz et al., 2012). This is in addition to the previously developed
Mouse Brain Atlas.

The enormousness of brain data available and the complexity
of the research questions that need answering through integrated
models for brain data analysis are grand challenges for the areas
of machine learning and information science in general as already
pointed in some recent publications (Gerstner, Sprekeler, & Deco,
2012; Koch & Reid, 2012; Poline & Poldrack, 2012; Van Essen et al.,
2012).
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