
Neural Networks 41 (2013) 15–22

Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2013 Special Issue

Mirror neurons, language, and embodied cognition
Leonid I. Perlovsky b,a,∗, Roman Ilin b

a Harvard University, United States
b AFRL, United States

a r t i c l e i n f o

Keywords:
Cognition
Language
Mirror neurons
Emotions
Dynamic logic
Neural modeling fields
Joint emergence
Embodiment

a b s t r a c t

Basic mechanisms of themind, cognition, language, its semantic and emotional mechanisms aremodeled
using dynamic logic (DL). This cognitively and mathematically motivated model leads to a dual-model
hypothesis of language and cognition. The paper emphasizes that abstract cognition cannot evolve
without language. The developed model is consistent with a joint emergence of language and cognition
from a mirror neuron system. The dual language–cognition model leads to the dual mental hierarchy.
The nature of cognition embodiment in the hierarchy is analyzed. Future theoretical and experimental
research is discussed.
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1. Basic mechanisms of the mind

This paper develops a hypothesis about the role of language
in cognition. Language is not only a communication device but
also a fundamental part of cognition and learning concepts,
especially abstract concepts. The mind abilities for perception
and cognition involve interactions of bottom-up and top-down
signals (Grossberg, 1982; Kosslyn, 1980, 1994; Schacter & Addis,
2007). A fundamental property of this interaction is a process
‘‘from vague to crisp’’. Vague, distributed, and unconscious mental
representations evolve into crisp and conscious perceptions and
cognitions; development in this paper is based on previous
theoretical, simulation, and experimental results (Bar, 2007; Bar
et al., 2006; Perlovsky, 1987, 1988a, 1994, 1997a, 2001, 2002a,
2006a; Perlovsky & McManus, 1991). The process ‘‘from vague
to crisp’’ is modeled mathematically by neural modeling fields
and dynamic logic (DL),mathematicalmodels describing evolution
from vague mental states (perception representations, plans,
concepts, actions) to crisp ones, and the adequacy of this model for
actual brain–mind processes has been confirmed in brain imaging
experiments (Bar, 2007; Bar et al., 2006; Perlovsky, 2009c).

NMF is a neural architecture modeling the mind (Perlovsky,
1987, 2001, 2006a). Its learning dynamics is described by DL,
which overcomes combinatorial complexity (CC) encountered
for decades by computational attempts to model brain–mind
mechanisms (Kovalerchuk, Perlovsky, &Wheeler, 2011; Perlovsky,
1998, 2010d). The problem of CC was first identified in pattern
recognition and classification research in the 1960s, and was
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named ‘‘the curse of dimensionality’’ (Bellman, 1961); high-
dimensional pattern recognition systems required combinatorially
large number of training examples. This difficulty has been
attempted to overcome using rule systems (Minsky, 1975;
Winston, 1984); rule systems work well when all aspects of
the problem can be predetermined. However, in the presence of
variability, the number of rules grew; rules became contingent on
other rules and combinations of rules had to be considered; CC of
rules has been encountered. Initial approaches to mathematical
modeling of language also used rule systems and encountered
similar problems (Chomsky, 1972).

Subsequent developments resulted in understanding that a
fundamental mathematical reason for CC was its relation to
logic used by computational approaches to modeling the mind
(Perlovsky, 1996, 2001, 2012a). Even approaches specifically
designed to overcome limitations of logic, such as fuzzy logic and
neural networks, used logic at some algorithmic steps (e.g. for
learning: ‘this is a chair’ is a logical statement). In addition,
overcoming limitations of logic has been difficult psychologically,
because, as demonstrated in the above references, vague parts of
the DL process are inaccessible to consciousness. Only final states
of the DL processes are accessible to consciousness, and these
are approximately logical perceptions and cognitions. This have
been proven experimentally (Bar, 2007; Bar et al., 2006; Perlovsky,
2006b, 2007a, 2007b, 2007f). Therefore subjective consciousness
is biased toward logic. For thousands of years the mind has been
considered as a logical system.

DL processes are mathematically equivalent to the knowledge
instinct (KI), an inborn drive to maximize similarity between top-
down and bottom-up signals (Perlovsky, 2001, 2006a; Perlovsky
& McManus, 1991). The idea of KI is somewhat similar to the need
for cognition (Cacioppo & Petty, 1982; Cacioppo, Petty, Feinstein, &
Jarvis, 1996) and to reinforcement learning (Sutton & Barto, 1998),
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Fig. 1. Learning situations; white dots show present objects and black dots correspond to absent objects. Vertical axes show 1000 objects, and horizontal axes show 10
situations each containing 10 relevant objects and 40 ransom one; in addition, there 5000 ‘‘clutter’’ situations containing only random objects. Fig. 1(a) shows situations
sorted along the horizontal axis; hence there are horizontal lines corresponding to relevant objects (the right half contains only random noise). Fig. 1(b) show the same
situations in random order, which looks like random noise.

with maximization of knowledge being the reinforcer. Instincts or
inborn drives are understood and modeled in this paper according
to the Grossberg–Levine theory of drives and emotions (1987):
instincts can bemodeled as internal sensorsmeasuring vital bodily
parameters; satisfaction and dissatisfaction of instinctual drives
are experienced as emotions. According to Perlovsky (1988a, 2001,
2006a) and Perlovsky andMcManus (1991), knowledge acquisition
in the process of matching top-down and bottom-up signals is
driven by KI. As with other instincts, there are specific emotions
related to KI; these emotions related to knowledge since Kant
(1790) are called aesthetic emotions (Perlovsky, 2001, 2002a,
2002b, 2006a). Experimental existence of these emotions has been
demonstrated in Perlovsky, Bonniot-Cabanac, and Cabanac (2010).
These emotions are inseparable from every process of perception
and cognition. They are below the level of consciousness at lower
levels of mental hierarchy (this hierarchy is approximate; see
Carpenter & Grossberg, 1989). Near the top of the hierarchy they
are associated with improving mental representations unifying
the entire life experience and are perceived as emotions of the
beautiful (Perlovsky, 2001, 2002b, 2006a, 2007c, 2007g, 2008a,
2010b).

A mathematical model of KI is maximization of a similarity
between top-down and bottom-up signals,

L =


h∈H


n∈N


m∈M

r(m, h) l (n|m, h). (1)

Here, h, n,m are indexes enumerating levels of the hierarchy,
n and m enumerate bottom-up and top-down signals at level
h, and l (n|m, h) is a conditional similarity between signals n
and m at level h; it is conditional on signal n originating from
representation-model m (Perlovsky & Kozma, 2007). Similarity at
every level h accounts for all combinations of signals n coming from
anymodelm. Hence even at a single level there is a huge number of
itemsMN in Eq. (1); this is a basic reason for CC of most algorithms
(Yardley, Perlovsky, & Bar, 2012).

The knowledge instinctmaximizes similarity L over parameters
of representations S. DL maximizes similarity Lwithout CC. The DL
process at every level h is given by

f (m|n) = r(m) l (n|m)/

m′

r(m′) l (n|m′). (2)

dSm/dt =


n∈N

f (m|n)[∂ ln l (n|m)/∂Mm]∂Mm/∂Sm. (3)

Values f (m|n) associate bottom-up and top-down signals (n and
m). In theDL process of learning these quantities evolve fromvague

and uncertain to crisp and certain (near 1 or 0). As demonstrated
in Perlovsky (1988b, 1989, 1997a, 1997b), at certain conditions DL
learns maximum information from available data.

2. Cognition example

At each level of the hierarchy, bottom-up signals interact
with top-down signals. For concreteness, we consider the level
of the situations: learning situations composed of objects. In a
real brain–mind process, learning and recognition of situations
proceeds in parallel with perception of objects, as well as
lower-level and higher-level representations. To simplify the
presentation, here we consider objects being already recognized.
Situations are collections of objects; every situation thus is a
collection of bottom-up signals corresponding to objects. The
fundamental difficulty of learning and recognizing situations (as
well as every higher-level representation) is that, when looking
in any direction, a large number of objects is perceived. Some
combinations of objects form ‘‘situations’’ important for learning
and recognition, but most combinations of objects are just random
collections, which the human mind learns to ignore. The total
number of combinations exceeds by far the number of objects in
the Universe. This is the reason for this problem having not being
solved over the decades.

Following (Ilin & Perlovsky, 2010; Perlovsky & Ilin, 2010a,
2010b), we define conditional similarities as

l (X(n)|Mm(n)) =

Io
i=1

pmi
xni(1 − pmi)

(1−xni). (4)

Here, n is the index of bottom-up signals available for learning
(say, a number of observed situations), Io is the number of
components of bottom-up signals (say the number of bottom-up
signal objects in signal n), X(n) = (xn1, . . . , xni, . . . , xnIo); and in
the model representation pm = (pm1, . . . , pmi, . . . , pmIo), pmi is
the probability of component i being part of model representation
m. In reality, bottom-up signals do not contain the same number
of components, and Io varies with n, but here we ignore this for
simplicity of notations.

We consider an example of learning higher-level representa-
tions (say, situations) from lower-level representations (say, ob-
jects). This example is considered in detail in Perlovsky (2010b)
and Perlovsky and Ilin (2010a); Figs. 1 and 2 summarize the results.
The data available for learning and recognition of situations in this
example are illustrated in Fig. 1. Horizontal axes correspond to sit-
uations. Each situation is characterized by objects shown along
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