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a b s t r a c t

Synaptic plasticity is a major mechanism for adaptation, learning, and memory. Yet current models
struggle to link local synaptic changes to the acquisition of behaviors. The aim of this paper is to
demonstrate a computational relationship between local Hebbian plasticity and behavior learning
by exploiting two traditionally unwanted features: neural noise and synaptic weight saturation. A
modulation signal is employed to arbitrate the sign of plasticity: when the modulation is positive, the
synaptic weights saturate to express exploitative behavior; when it is negative, the weights converge to
average values, and neural noise reconfigures the network’s functionality. This process is demonstrated
through simulating neural dynamics in the autonomous emergence of fearful and aggressive navigating
behaviors and in the solution to reward-based problems. The neural model learns, memorizes, and
modifies different behaviors that lead to positive modulation in a variety of settings. The algorithm
establishes a simple relationship between local plasticity and behavior learning by demonstrating the
utility of noise and weight saturation. Moreover, it provides a new tool to simulate adaptive behavior,
and contributes to bridging the gap between synaptic changes and behavior in neural computation.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper describes a novel, modulated Hebbian plasticity
rule that makes productive use of features of Hebbian dynamics
that in the past were thought undesirable. By utilizing noise
and saturation, operant reward learning can emerge from the
present learning rule, establishing an important link between local
plasticity and macro-level behavioral adaptation.

The idea that adaptation, learning, andmemory rely on synaptic
change has gathered increasing consensus, beginning with the
early studies of Hebb (1949) and the seminal work of Kandel
and Tauc (1965). Early studies on the mollusk Aplysia proved
that behavioral changes were precisely linked to the growth
of particular pathways from sensory to motor systems (Carew,
Walters, & Kandel, 1981; Kandel & Tauc, 1965). However, synaptic
change follows richdynamics that are often theproduct of different
chemical signals (Clark, 2001) whose interaction and mechanisms
are not completely understood. The Hebbian paradigm (Bi & Poo,
2001; Brown, Kairiss, & Keenan, 1990; Cooper, 2005; Gerstner
& Kistler, 2002a; Hebb, 1949; Marr, 1969; Stent, 1973), which
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states that neurons that fire together wire together, is a ubiquitous
paradigm in neuroscience that has been substantially validated
through neural recordings (Kelso, Ganong, & Brown, 1986; Lisman,
1989; Markram, Lübke, Frotscher, & Sakmann, 1997; McNaughton,
Barnes, Rao, & Rasmussen, 1986; Stent, 1973), corroborating
detailed rate-based (Bienenstock, Cooper, &Munro, 1982; Gerstner
&Kistler, 2002a; Grossberg, 1976; Oja, 1982; Rauschecker & Singer,
1981) and spiking neural (van Rossum, Bi, & Turrigiano, 2000)
models.

The increasingly evident link between behavior learning and
synaptic plasticity has encouraged researchers to propose numer-
ous models whose overall behavior changes with the modification
of synaptic weights; for reviews, see Bi and Poo (2001); Dayan and
Abbott (2001); Gerstner and Kistler (2002a). However, one con-
troversial and often unwanted feature of Hebbian models is that
increasing firing leads to increasing synaptic strength, which in
turn leads to further increasing of firing (Hasselmo, 1994; Miller &
Mackay, 1994; Moldakarimov & Sejnowski, 2008). When a weight
is larger than a certain threshold, a positive feedback will cause
the weight to increase indefinitely. Such a model yields auto-
correlation rather than cross-correlation of signals (Porr &Wörgöt-
ter, 2006). To prevent indefiniteweight growth, various constraints
can be imposed on the basic Hebbian plasticity (Bienenstock et al.,
1982; Miller & Mackay, 1994; Oja, 1982). A second limitation of
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simple Hebbian plasticity is that learning can be just as fast as un-
learning. For such models, short-lived stimuli leave a short-lived
trace in the network regardless of their relevance. This feature con-
trasts with long-term potentiation (LTP), in which certain condi-
tions induce synapses to maintain the increased strength in the
long term (Brown, Chapman, Kairiss, & Keenan, 1988; Gustafsson,
Wigstroem, Abraham, & Huang, 1987; Kelso et al., 1986; Levy &
Steward, 1979, 1983).

In effect, the dynamics of Hebbian plasticity in biology are often
affected and substantially altered by additional homeostatic dy-
namics (Turrigiano, 2008) and neuromodulators (Bailey, Giustetto,
Huang, Hawkins, & Kandel, 2000; Clark, 2001; Giocomo & Has-
selmo, 2007; Harris-Warrick &Marder, 1991; Hasselmo, 1995). For
example, when the Aplysia encounters noxious stimuli, additional
modulatory activity is also triggered, resulting in longer-lasting
synaptic changes (Bailey et al., 2000; Clark & Kandel, 1984). This
observation suggests that additional modulatory chemicals act as
selectors of relevant stimuli that require learning of long-lasting
responses, as in the case of dangerous or pain-inducing conditions
(Bailey et al., 2000). To date there is extensive evidence linking
conditioning behavior and reward learningwith neuromodulation.
Modulatory activity appears to carry reward information across a
surprisingly large spectrum of animals, from insects like the hon-
eybee (Gil, DeMarco, & Menzel, 2007; Hammer, 1993), to mol-
lusks like the Aplysia (Brembs, Lorenzetti, Reyes, Baxter, & Byrne,
2002; Walters & Byrne, 1983) and to mammals (Berridge & Robin-
son, 1998; Schultz, Apicella, & Ljungberg, 1993; Schultz, Dayan, &
Montague, 1997; Wise & Rompre, 1989). Yet whether and why
neuromodulation is computationally essential to achieve such
long-lasting behavioral responses has not been clarified.

Driven by biological findings, researchers have augmented their
modelswithmodulatory signals (Fellous& Linster, 1998;Hasselmo
& Schnell, 1994; Ludvig, Sutton, & Kehoe, 2008) or attempted to
model biological modulatory activities (Baxter, Canavier, Clark, &
Byrne, 1999; Cohen, 2008). The precise role of various modula-
tory chemicals (e.g. serotonin, acetylcholine, dopamine, and nore-
pinephrine (Bear, Connors, & Paradiso, 2005; Hasselmo, 2006)) is
still debated, in particular regarding the role of dopamine in re-
ward learning (Berridge & Robinson, 1998; Montague, Hyman, &
Cohen, 2004; Pennartz, 1996, 1997; Redgrave, Gurney, & Reynolds,
2008; Schultz, 2006). Moreover, modulation appears to regulate a
large variety of behaviors such as arousal, attention, reward learn-
ing, and memory (Aston-Jones & Cohen, 2005; Harris-Warrick &
Marder, 1991; Hasselmo, 1995), resulting in an accordingly large
spectrum of dynamics and models that regulate synaptic efficacy,
synaptic changes, and other neural variables (Cox & Krichmar,
2009; Doya, 2002; Fellous & Linster, 1998; Hasselmo & Schnell,
1994; Krichmar, 2008; Smith, Husbands, Philippides, & O’Shea,
2002). One promising computational aspect of modulation is the
possibility of increasing, decreasing, or inverting the strength and
sign of plasticity (Abbott, 1990; Florian, 2007; Izhikevich, 2007;
Montague, Dayan, & Sejnowski, 1996; Pfeiffer, Nessler, Douglas, &
Maass, 2010; Porr & Wörgötter, 2007), making neuromodulation
particularly suitable for modeling and implementing learning pro-
cesses (Cox & Krichmar, 2009; Doya, 2002; Doya & Uchibe, 2005;
Farries & Fairhall, 2007; Krichmar, 2008; Soula, Alwan, & Beslon,
2005; Sporns & Alexander, 2002). The focus in this study is on this
latter role ofmodulation as a gatingmechanism forHebbian synap-
tic plasticity.

A fundamental issue is that a weight change that follows local
rules does not always have a straightforward relationship with
the system-level input–output mapping. This disconnect makes it
difficult to apply local unsupervised plasticity rules to the fields of
simulated adaptive behavior, artificial life (Langton, 1990; Sporns
& Alexander, 2002), and robotics (Arkin, 1998). In these areas,
the use of closed-loop controllers, in which the relationships

between local and system-level dynamics are continuously tested,
can provide the ultimate verification of the learning properties
of a model. The model presented in this paper aims to establish
a simple relationship between modulated Hebbian plasticity and
operant reward learning, thereby connecting models of plasticity
more closely to the learning of behaviors.

Instead of focusing on precise weight tuning, the unique
position of this paper is to search for behavioral responses
by allowing the weights to saturate, expressing either highly
excitatory or inhibitory responses. By intentionally allowing
weights to saturate, a network can express a marked and stable
response to inputs, which can be interpreted as behavioral
exploitation. On the other hand, by inverting this process at
times, i.e. by inverting the sign of Hebbian plasticity (Lisman,
1989; Stent, 1973), pathways can be depressed to allow noisy
neural transmission to implement behavioral exploration. The
alternation of these two regimes of Hebbian and anti-Hebbian
plasticity produces the key dynamics of alternating exploitation
and exploration observed in operant reward learning. The change
in modulatory activity has in fact been suggested to regulate the
alternation of exploration and exploitation in Krichmar (2008).
Thus, while the dynamics of modulated Hebbian plasticity and
modulated spike-timing-dependent plasticity (STDP) have been
extensively investigated (Abbott, 1990; Florian, 2007; Frémaux,
Sprekeler, & Gerstner, 2010; Montague et al., 1996; Pfeiffer et al.,
2010; Porr & Wörgötter, 2007), the novelty of this work is their
extension by means of saturation and noise, resulting in a simpler
and more fundamental connection between local changes and
higher-level simulated behavior. The fundamental properties of
the new plasticity model are tested in behavioral tasks employing
first a single-neuron model, and later they are extended to multi-
neuron networks.

As opposed to the algorithms proposed by Frémaux et al.
(2010), Legenstein, Chase, Schwartz, andMaass (2010), and Pfeiffer
et al. (2010), the present work neither devises a learning rule
for optimal weight tuning nor proposes a new reinforcement
learning algorithm. In fact, while reinforcement learning by
means of modulated spike-timing-dependent plasticity (STDP)
was demonstrated in Florian (2007), Frémaux et al. (2010) and
Soula et al. (2005), the primary aim of this work is the exploitation
of saturated weights and neural noise to achieve a simple bottom-
up implementation of operant reward learning. Furthermore, in
contrast to Pfeiffer et al. (2010), the current algorithm does
not require a decay function, input signal preprocessing, nor
winner-take-all action selection. Crucially, the neural noise in
the present implementation is not used to improve exploration,
as in Legenstein et al. (2010), but rather serves as the only
and fundamental driving mechanism to reconfigure the network
connectivity, thereby achieving behavioral exploration under the
anti-Hebbian regime. Additionally, as opposed to Legenstein et al.
(2010), where slow variation of input values and continuity in the
task are required for recent activity averages, inputs and outputs
in the proposed method can change state arbitrarily according
to sudden changes of the task or environmental conditions.
The insight that operant reward learning can emerge naturally
and without additional engineering from Hebbian dynamics is a
fundamental contribution of this study.

The plasticity mechanism, described in Section 2, is tested
in several simulations reported in Section 3. Section 4 discusses
the results, and Section 5 presents the conclusion. Appendix A
shows that the plasticity rule behaves similarly on a simple
spiking-neuron model. Further implementation details and how
to reproduce the results with the Matlab code are reported in
Appendices B–D.
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