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A specific type of neural networks, the Restricted Boltzmann Machines (RBM), are implemented for
classification and feature detection in machine learning. They are characterized by separate layers of
visible and hidden units, which are able to learn efficiently a generative model of the observed data. We
study a “hybrid” version of RBMs, in which hidden units are analog and visible units are binary, and we
show that thermodynamics of visible units are equivalent to those of a Hopfield network, in which the
N visible units are the neurons and the P hidden units are the learned patterns. We apply the method of
stochastic stability to derive the thermodynamics of the model, by considering a formal extension of this
technique to the case of multiple sets of stored patterns, which may act as a benchmark for the study of
correlated sets.

Our results imply that simulating the dynamics of a Hopfield network, requiring the update of N
neurons and the storage of N(N — 1)/2 synapses, can be accomplished by a hybrid Boltzmann Machine,
requiring the update of N + P neurons but the storage of only NP synapses. In addition, the well known
glass transition of the Hopfield network has a counterpart in the Boltzmann Machine: it corresponds to an
optimum criterion for selecting the relative sizes of the hidden and visible layers, resolving the trade-off
between flexibility and generality of the model. The low storage phase of the Hopfield model corresponds
to few hidden units and hence a overly constrained RBM, while the spin-glass phase (too many hidden
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units) corresponds to unconstrained RBM prone to overfitting of the observed data.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A common goal in Machine Learning is to design a device able
to reproduce a given system, namely to estimate the probability
distribution of its possible states (Honavar & Uhr, 1994). When a
satisfactory model of the system is not available, and its underlying
principles are not known, this goal can be achieved by the
observation of a large number of samples (Coolen, Kuehn, & Sollich,
2005). A well studied example is the visual world, the problem of
estimating the probability of all possible visual stimuli (Pitkow,
2010). A fundamental ability for the survival of living organisms
is to predict which stimuli will be encountered and which are
more or less likely to occur. For this purpose, the brain is believed
to develop an internal model of the visual world, to estimate
the probability and respond to the occurrence of various events
(Bernacchia & Amit, 2007; Bernacchia, Seo, Lee, & Wang, 2011).

Ising-type neural networks have been widely used as genera-
tive models of simple systems (Barra, 2008; Hertz, Krogh, & Palmer,
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1991). Those models update the synaptic weights between neu-
rons according to a specific learning rule, depending on the neural
activity driven by a given set of observations; after learning, the
network is able to generate a sequence of states whose probabil-
ities match those of the observations. Popular examples of Ising
models, characterized by a quadratic energy function and a Boltz-
mann distribution of states, are the Hopfield model (Amit, 1992;
Hopfield, 1982) and Boltzmann Machines (BM) (Hinton, 2007).
Boltzmann Machines (BM) have been designed to capture the com-
plex statistics of arbitrary systems by dividing neurons in two
subsets, visible and hidden units: marginalizing the Boltzmann
distribution over the hidden units allows the BM to reproduce,
through the visible units, arbitrarily complex distributions of
states, by learning the appropriate synaptic weights (Hinton,
2007). State-of-the-art feature detectors and classifiers implement
a specific type of BM, the Restricted Boltzmann Machine (RBM), be-
cause of its efficient learning algorithms (Bengio, 2009). The RBM
is characterized by a bipartite topology in which hidden and visi-
ble units are coupled, but there is no interaction within either set
of visible or hidden units (Hinton & Salakhutdinov, 2006).

All neurons of RBMs are binary, both the visible and the hidden
units. The analog equivalent of RBMs, the Restricted Diffusion
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Fig. 1. Left panel: schematic representation of a Hybrid Boltzmann Machine (HBM) where the hidden units are analog (z, t variables) and the visible units are binary (o
variables). The two sets of hidden units, z and 7, represent two feature sets that are both connected to the layer of visible units o . The layers of hidden and visible units are
reciprocally connected, but there are no intra-layer connections, thus forming a bipartite topology. Right panel: schematic representation of the equivalent Hopfield neural

network built upon the visible units only, with an internal fully connected structure.

Networks, have all analog units and have been described in Bengio
(2009) and Marks and Movellan (2001). Here we study the case of a
“hybrid” Boltzmann Machine (HBM), in which the hidden units are
analog and the visible units are binary (Fig. 1 left). We show that
the HBM, when marginalized over the hidden units, is equivalent to
a Hopfield network (Fig. 1 right), where the N visible units are the
neurons and the P hidden units are the learned patterns. Although
the Hopfield network can generate probability distributions in a
limited space, it has been widely studied for its associative and
retrieval properties. The exact mapping proven here introduces
a new way to simulate Hopfield networks, and allows a novel
interpretation of the spin glass transition, which translates into an
optimal criterion for selecting the relative size of the hidden and
visible layers in the HBM.

We use the method of stochastic stability to study the ther-
modynamics of the system in the case of analog synapses. This
method has been previously described in Aizenman and Contucci
(1998) and Barra, Genovese, and Guerra (2010), and offers an
alternative approach to the replica trick for studying Ising-type
neural networks, including the Hopfield model and the HBM. We
analyze the model with two non-interacting sets of hidden units in
the HBM, which correspond to two sets of uncorrelated patterns in
the Hopfield network, and study the thermodynamics with the as-
sumption of replica symmetry. We extend the theory to cope with
two sets of interconnected hidden layers, corresponding to sets of
correlated patterns, and we show that their interaction acts as a
noise source for retrieval.

2. Statistical equivalence of HBM and Hopfield networks

We define a “hybrid” Boltzmann Machine (HBM, see Fig. 1
left) as a network in which the activity of units in the visible
layer is discrete, o; = =+1,i € (1,...,N) (digital layer), and
the activity in the hidden layer is continuous (analog layer). The
layers of hidden and visible units are reciprocally connected, but
there are no intra-layer connections, thus forming a bipartite
topology. We assume that the layer of hidden units is further
divided into two sets, both described by continuous variables,
Z,, v €N, nwe(,...,P), ve,... K).Wewil consider
the case of interacting hidden units (connections between z and 1)
in the next section. In order to maintain a parsimonious notation,
in this section we consider a single hidden layer, e.g. only the layer
defined by the variables z.

The synaptic connections between units in the two layers are
fixed and symmetric, and are defined by the synaptic matrix S,-“ .

The input to unit o; in the visible (digital) layer is the sum of the
activities in the hidden (analog) layer weighted by the synaptic
matrix, i.e. Zﬂ %}Mlu- The input to unit z, in the hidden (analog)
layer is the sum of the activities in the visible (digital) layer,
weighted by the synaptic matrix, i.e. >, Si” o;. In the following, we
denote by z the set of all hidden {z,,} variables, and by o the set of
all visible {o;} variables.

The dynamics of the activity is different in the two layers; in the
analog layer it changes continuously in time, while in the digital
layer it changes in discrete steps. The activity in the hidden (analog)
layer follows the stochastic differential equation

dz, . 2T
T ;; = —Zﬂ(t)+Z§il Ui"‘\/;fn(t)v (1)

where ¢ is a white Gaussian noise with zero mean and covariance
(¢.(DC,(t)) = 8.y 8(t — ). The parameter T quantifies the
timescale of the dynamics, and the parameter 8 determines the
strength of the fluctuations. The first term in the right hand side
is a leakage term, the second term is the input signal and the
third term is a noise source. Since noise is uncorrelated between
different hidden units, they evolve independently. Eq. (1) describes
an Ornstein-Uhlembeck diffusion process (Tuckwell, 1988) and,
for fixed values of o, the equilibrium distribution of z,, is a Gaussian
distribution centered around the input signal, which is equal to

2
Pr(z,lo) =,/ % exp —g (Zu — Zg;‘a,) . (2)

1

In order for this equilibrium distribution to hold, the activity of
digital units o must be constant, while in fact it depends on
time. However, we assume that the timescale of diffusion T is
much faster than the rate at which the digital units are updated.
Therefore, a different equilibrium distribution for z, characterized
by different values of o, holds between each subsequent update of
o.Since hidden units are independent, their joint distribution is the
product of individual distributions, i.e. Pr(z|o) = ]_[Zzl Pr(z,|o).

The activity in the visible (digital) layer follows a standard
Glauber dynamics for Ising-type systems (Amit, 1992). At a
specified sequence of time intervals (much larger than T), the
activity of units in the digital layer is updated randomly according
to a probability that depends on their input. While updating
the digital units o, the analog variables z are fixed, namely the
update of digital units is instantaneous. The activity of a unit o; is
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