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The ranking problem is to learn a real-valued function which gives rise to a ranking over an instance
space, which has gained much attention in machine learning in recent years. This article gives analysis
of the convergence performance of neural networks ranking algorithm by means of the given samples
and approximation property of neural networks. The upper bounds of convergence rate provided by
our results can be considerably tight and independent of the dimension of input space when the target
function satisfies some smooth condition. The obtained results imply that neural networks are able to
adapt to ranking function in the instance space. Hence the obtained results are able to circumvent the
curse of dimensionality on some smooth condition.
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1. Introduction

The analysis of convergence performance of learning algorithm
is an important and hot topic in machine learning research. To our
knowledge, Vapnik and Chervonenkis (1971) first started to study
the learning algorithm and established the analysis of convergence
for classification algorithm from the statistical analysis. Since then,
more different tools have been used to study the convergence
performance of learning algorithms and have been applied to both
classification (learning of binary-valued functions) and regression
(learning of real-valued functions). In many learning algorithms,
the goal is not simply classifying objects into one of a fixed number
of classes; instead, a ranking of objects is desired. For example,
in information retrieval problems, where one likes to retrieve
documents from some databases that are ‘relevant’ to a given
query or topic. In such problems, one needs a ranking of the
documents so that relevant documents are ranked higher than
irrelevant documents. Recently, the ranking problem has gained
much attention in machine learning (see Agarwal & Niyogi, 2005,
2009; Clemencon, Lugosi, & Vayatis, 2008; Cohen, Schapire, &
Singer, 1999; Cortes, Mohri, & Rastogi, 2007; Cossock & Zhang,
2006; Cucker & Smale, 2001, 2002). For ranking problem, we learn
a real-valued function which gives scores to instances; however,
these scores themselves do not matter; instead, we are only
interested in the relative ranking of instances which are given by
these scores.
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Now, the ranking has been successfully applied to all kinds
of fields, such as social choice theory (Kenneth, 1970), statistics
(Lehmann, 1975) and mathematical economics (Chiang & Wain-
wright, 2005). However, in 1999 Cohen et al. (1999) first began
to study the ranking in machine learning. From then on, many
researchers started to pay attention to it and study the interest-
ing topic from machine learning view, for example, Crammer and
Singer (2002) and Herbrich, Graepel, and Obermayer (2000) con-
sidered the related ranking but distinct problem of ordinal re-
gression. Radlinski and Joachims (2005) developed an algorithmic
framework for ranking in information retrieval applications. Both
Agarwal and Niyogi (2005) and Freund, lyer, Schapire, and Singer
(2003) have considered the convergence properties of ranking al-
gorithms for the special setting of bipartite ranking respectively.
Clemencon et al. (2008) have given statistical convergence proper-
ties of ranking algorithms based on empirical and convex risk min-
imization by using the theory of U-statistics. Agarwal and Niyogi
(2009) studied the convergence properties of ranking algorithms
in a more general setting of the ranking problem that arise fre-
quently in applications and convergence error via ranking algorith-
mic stability. Burges et al. (2005) have developed a neural network
based on the algorithm of ranking problem. Although there have
been several recent advances in developing algorithms for various
settings of the ranking problem, the study of generalization prop-
erties of ranking algorithms has been largely limited to the spe-
cial setting of bipartite ranking (see Agarwal & Niyogi, 2005, Fre-
und et al., 2003). Similar to Agarwal and Niyogi (2009), we study
the convergence property of ranking learning algorithms in a more
general setting of the ranking problem that arises frequently in ap-
plications and practice. Our convergence rates are derived by us-
ing the approximation property of neural networks and covering
number instead of the notion of algorithmic stability in reproduc-
ing kernel Hilbert space in Agarwal and Niyogi (2009).
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Similar to both classification and regression, the ranking
problem takes place in some hypothesis space which has
good approximation property for a ranking function. It is well
known that feedforward neural networks (FNNs) have universal
approximation property for any continuous or integrable functions
defined on a compact set; there are some algorithms to carry out
the approximation. In 1989, Cybenko (1989) first proved that if the
activation function in FNNSs is a continuous sigmoidal function, and
I = [0, 1]¢ is a unit cube in R¢, then any continuous function on
I = [0, 1]¢ is approximated by FNNs. Since then, some different
methods from Cybenko (1989) have been designed. Meanwhile, a
series of investigations into the condition of activation function
ensuring the validity of the density theorem can be found in
Chen and Chen (1995a, 1995b), Chen, Chen, and Liu (1995),
Hornik (1991), and Mhaskar and Micchelli (1992). The complexity
of FNN approximation mainly describes the relationship among
the topology structure of hidden layer (such as the number of
neurons and the value of weights), the approximation ability and
the approximation rate. The study of complexity has attracted
much attention in recent years (Cao, Zhang, & He, 2009; Cao,
Zhang, & Xu, 2009; Chui & Li, 1992; Maiorov & Meir, 1998; Xu
& Cao, 2005). In the study of machine learning, FNNs are usually
used as hypothesis space to study the convergence performance
of learning algorithm. For example, Barron (1993) gave the
convergence rate of least square regression learning algorithm
by the approximation property of FNNs. In 2006, Hamers and
Kohler (2006) obtained nonasymptotic bounds on the least square
regression estimates by minimizing the empirical risk over suitable
sets of FNNs. Recently, Kohler and Mehnert (2011) gave an analysis
of the rate of convergence of least squares learning algorithm
in FNNs for smooth regression function. In this article, we study
ranking learning algorithm by using neural networks, where the
hypothesis space is chosen as a class of FNNs with one hidden layer.

The article is organized into six sections. Following the
introduction in the present section, we describe general ranking
problem in a more general setting and introduce neural networks
in Section 2. In Section 3, we give approximation error of ranking
algorithm by the approximation property of neural networks.
Section 4 estimates the sample error. The obtained upper bound
in connection with the approximation error leads to estimating
the upper bound of convergence rate of neural networks ranking
algorithm. In Section 5, we compare our results with the known
related work. Finally, we conclude the article with the obtained
results.

2. General ranking problem and neural networks

For the ranking problem, one is given some samples of ordering
relationships among instances in some instance space X, and the
goal is to learn a real-value function from these samples that
ranks future instances. The ranking problems arise in all kinds
of domains: in user-preference modeling, one wants to order
movies or texts according to likes of oneself, and in information
retrieval, where one is interested in retrieving documents from
some databases that are ‘relevant’ to a given query or topic. In such
problems, one wants to return a list of documents that contains
relevant documents at the top and irrelevant documents at the
bottom to the user; in other words, one wants a ranking of the
documents so that relevant documents are ranked higher than
irrelevant documents. In this article, we let X C B, = {x €
R4 xl2 < 1}, Y = [0,Mg] C R for two positive constants
r, My, and let p be a probability distribution onZ = X x Y, and
Px, p(¥|x) are marginal probability and conditional probability on
Z respectively. Denote z = {z}]1; = {(x;, yi)},; € Z™ a set of
labeled samples according to p. The goal of the ranking problem
is to learn a real-valued function f (f : X — Y) which orders

exactly the other instances in X according to random samples. The
function f is considered to rank x lower than x’ if f(x) < f(X),
and higher than if f (x) > f (). The penalty for mistakenly ranking
a pair of instances can be taken greater for mistakenly ranking a
pair of instances with a larger difference between their labels. We
introduce the ranking loss function in the following definition.

Definition 1 (See Agarwal and Niyogi (2009)). A ranking loss func-
tionisa function £ : XY x (X x Y) x (X x Y) — KT U {0} that
assigns to eachreal functionf : X — Y,and (x, y), (¥, y) € (X,Y)
a non-negative real number £(f, (x,y), (X', y)).

The ranking loss function can be interpreted as the penalty
of f in its relative ranking of two instances x and x’' given their
corresponding labels y and y’. We shall require that the loss
function ¢ be symmetric with respect to (x,y) and (x',y’), that

is £(f, (x, y), X, y)) = €(f, (X,y), (x,y)) for all f, (x,y) and
(x',y). Several ranking loss functions are useful in the study of
ranking problem as follows:

(1) the 0-1 ranking loss function:

, 1

Loa(f, (%, ¥), X, ¥)) = Ly—y)Fro—rn<o + Elf(x)=f(x’);

(2) the least squares ranking loss function:

, 2

Cg(f, (x,9), X,y = (ly =y —sgny —y)FX) —fFx))";

(3) the discrete ranking loss function:

/ ! / 1
Laiscf, X, 9), X,y =ly—y |<I(y—y’)(f(x)—f(x’))<0 + Elf(x):f(x’));

(4)for y > 0, the y-ranking loss function is defined as follows:
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0. if(f(x) f(x)) x sgn(y —y) > ly—yl.
v
where for u € R,
1, if u>0,
sgn(u) = {0, ifu=0,
-1, ifu<ao.

According to the definitions of both the discrete ranking loss
function and the y-ranking loss function, we know that for all
y > 0, there holds £gisc < £,.

By using the ranking loss, we define the expected £-error of the
function f:

S(f) = Re(f) = E(x,y),(x/,y’)~p><pg(f’ (X, Y)v (x/,y’)). (1)

The functionf/f that minimizes the error (1) is given by
f3 = arg min By .y s (6 1), (5,

where the minimum is taken over all measurable functions. In the
article we always assume that f/f exists and satisfies [ff x)| <logm
forallx € X.

The corresponding empirical ranking error of expected ranking
£-error is defined as follows:

2 m—1 m
&) = RgA(f) = m 21 .Z]f(f, (Xi, ¥i)s (Xj,}’j))-
i=1 j=i
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