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a b s t r a c t

The theory of extreme learning machines (ELMs) has recently become increasingly popular. As a new
learning algorithm for single-hidden-layer feed-forward neural networks, an ELM offers the advantages
of low computational cost, good generalization ability, and ease of implementation. Hence the comparison
and model selection between ELMs and other kinds of state-of-the-art machine learning approaches has
become significant and has attracted many research efforts. This paper performs a comparative analysis
of the basic ELMs and support vector machines (SVMs) from two viewpoints that are different from
previous works: one is the Vapnik–Chervonenkis (VC) dimension, and the other is their performance
under different training sample sizes. It is shown that theVCdimension of an ELM is equal to the number of
hidden nodes of the ELMwith probability one. Additionally, their generalization ability and computational
complexity are exhibited with changing training sample size. ELMs have weaker generalization ability
than SVMs for small sample but can generalize as well as SVMs for large sample. Remarkably, great
superiority in computational speed especially for large-scale sample problems is found in ELMs. The
results obtained can provide insight into the essential relationship between them, and can also serve
as complementary knowledge for their past experimental and theoretical comparisons.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the standard tools for machine learning and data
mining, support vector machines (SVMs) (Cortes & Vapnik, 1995;
Vapnik, 1995) have yielded many real-world applications due to
their good generalization performance, even for small samples
(Jonsson, Kittler, Li, & Matas, 2002), and due to their superiority
to the traditional empirical risk minimization principle employed
by most neural networks (Lu, Plataniotis, & Ventesanopoulos,
2001). Similarly, extreme learning machines (ELMs), which were
originally proposed as novel learning algorithms for single-hidden-
layer feed-forward neural networks (SLFNs) (Huang, Chen, & Siew,
2006a; Huang, Wang, & Lan, 2011; Huang, Zhu, & Siew, 2004,
2006b) and then extended to generalized SLFNs where the hidden
layer neurons may not be neuron like (Huang & Chen, 2007,
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2008), have also attracted a lot of research interests (Feng, Huang,
Lin, & Gay, 2009; Liang, Huang, Saratchandran, & Sundararajan,
2006; Rong, Huang, Saratchandran, & Sundararajan, 2009; Wang,
Cao, & Yuan, 2011; Zhu, Qin, Suganthan, & Huang, 2005) due to
their better generalization performance and faster learning speed
than traditional gradient-based learning algorithms. To put it
briefly, these two methods are both frequently used intelligent
algorithms, and they may be used interchangeably in many
practical cases. However, each of them has individual merits and
shortcomings which lead to their being not completely equivalent.
Knowing the relationships and differences between these two
methods may provide more possibility to select appropriate
algorithms from them for a certain specific problem and may
also be helpful to develop more effective intelligent algorithms
for some practical purposes. It is not a novel issue to perform a
comparative analysis between the SVM and ELM algorithms. For
example, Huang et al. (2006b) pointed out that ELMs can obtain
similar generalization ability to SVMs but with much less training
time through simulation experiments on a few artificial and real
benchmark function approximation and classification problems;
Wei, Li, and Feng (2006) presented that the ELM algorithm is much
faster and has better generalization performance than the SVM
in a real Tennessee Eastman process; Liu, Loh, and Tor (2005),
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however, indicated that SVMs still outperform ELMs in some
text classification problems; Cheng, Cai, and Pan (2009) obtained
that the ELM algorithm has similar accuracy compared with the
SVM but has obvious advantages in parameter selection and
learning speedby addressing a reservoir permeability problem, etc.
Recently, Huang, Ding, and Zhou (2010) have made a significant
contribution showing the relationship between ELMs and SVMs in
the framework of classification, where the following consistencies
between them were found: (1) an SVM’s maximal separating
margin of two different classes is consistent with the minimal
norm of output weights in an ELM; (2) just as an SVM does, an
ELM also minimizes the training errors as well as maximizing
the separating margin. Further, Huang, Zhou, Ding, and Zhang
(2011) made a more in-depth exploration of their relationship,
and compared the performance of ELMs, SVMs, and least-squares
SVMs (LSSVMs) over 36 wide types of data sets, and drew the
following important conclusions: (1) the ELM provides a unified
learning platform to different applications, such as regression,
binary, andmulticlass classifications for the LSSVM, proximal SVM
(PSVM), and other regularization algorithms; (2) because of the
lack of the bias term b, from the optimization method point
of view, the ELM algorithm has milder optimization constraints
compared with the LSSVM and PSVM algorithms, which indicates
that, in theory, LSSVMs and PSVMs can only achieve suboptimal
solutions in comparison with ELMs; (3) the ELM algorithm tends
to achieve similar or better generalization performance at much
faster learning speed than the SVM and LSSVM algorithms.

All the above studies (i.e., (Cheng et al., 2009; Huang et al.,
2010, 2011; Liu et al., 2005; Wei et al., 2006)) give hints for
distinguishing SVMs and ELMs both theoretically and practically.
However, there also remain several aspects needing further
consideration. For example, the experimental investigations are
mainly focused on the comparisons of SVMs and ELMs applied
to a variety of examples, and the information is still unknown
in some specific cases, such as, for the same training sample,
the performance comparison of SVMs and ELMs with changing
sample size. Knowing such information may provide more insight
into the SVM and ELM algorithms because the former is based
on the structural risk minimization principle which is especially
suited for learning small samples, while the latter is based on the
inductive principle known as empirical risk minimization. Besides,
a comparison of the Vapnik–Chervonenkis (VC) dimensions of
SVMs and ELMs has not been conducted yet, which is also
important and interesting since VC theory can offer helpful
theoretical insights into the nature of the learning methods and
provide potential practical applicability for model complexity
control in learning problems (Cherkassky, Shao, Mulier, & Vapnik,
1999; Vapnik, 1995). For these reasons, the purpose of this
paper is to make comparisons of SVMs and the basic ELMs
from the theoretical viewpoint of their VC dimensions, and also
to perform experimental comparisons between them, including
comparisons of their generalization ability under different sizes of
training sample and of their computational complexity. The results
can strengthen the understanding on the essential relationship
between SVMs and ELMs, and can also serve as complementary
knowledge for the past experimental and theoretical comparisons
between them.

The rest of this paper is organized as follows. Section 2 briefly
reviews the concepts of SVMs and ELMs. This is followed by the
theoretical comparisons between SVMs and ELMs in Section 3.
Section 4 makes the experimental comparisons between them.
Finally, Section 5 concludes this paper.

2. Brief review of SVMs and ELMs

2.1. SVMs

Consider a nonlinear multiple-input single-output system

y = f (x) , (1)

where x ∈ Rn and y ∈ R. For simplicity, but without loss of
generality, the SVM is used here only to address the regression
problem of the studied system. The main idea of an SVM is first to
map the n-dimensional input data into a high-dimensional feature
space, denoted as F , through a nonlinear project Φ : Rn

→

F ; then, a linear algorithm is performed in this feature space to
approximate the underlying dynamics according to

y = f (x) = ⟨w, Φ(x)⟩ + b, (2)

where w ∈ F represents the weight vector, b ∈ R is the bias
term, and ⟨·, ·⟩ denotes the scalar product. This process is implicitly
implemented by specifying a kernel function K(x, x′), which in
turn determines the high-dimensional project Φ by K(x, x′) =
Φ(x), Φ(x′)


(Aizerman, Braverman, & Rozonoer, 1964). The

kernel is called a positive kernel if it satisfies Mercer’s condition
(Vapnik, 1995). Here, it should be noted that the dimension of
F is usually unknown, being very high and even infinite. For a
given kernel, the high-dimensional feature space with minimal
dimension is called ‘‘minimal feature space’’. In actual operation,
for a given training set {xi, yi}Ni=1, an SVM formulates the learning
problem of estimating f as a variational problem that minimizes
the regularized risk functional

Rreg [f ] = Remp[f ] +
1
2

∥w∥
2

= γ

N
i=1

e (f (xi), yi) +
1
2

∥w∥
2 . (3)

Here, Remp[f ] is the empirical risk function, ∥w∥
2 denotes

the model complexity, γ is the regularization parameter, and
e (f (xi), yi) is an ε-insensitive loss function, such as e (f (xi), yi) =

|f (xi) − yi|2ε . Usually, the quadratic programming problem, Eq. (3),
is changed to its dual form to obtain the high-dimensional vector
w, i.e., the following optimization problem:

max RD =

N
i=1

(µi − vi)yi − ε

N
i=1

(µi + vi)

−
1
2

N
i=1

N
j=1

(µi − vi)(µj − vj)K(xi, xj) (4)

subject to

N
i=1

(µi − vi) = 0, (5)

µi, νi ∈ [0, γ ], i = 1, 2, . . . ,N. (6)

Denote the points corresponding to nonzero µi or νi to be support
vectors xk; thenw and bmay be obtained by

w =


k∈SV

(µk − vk)Φ(xk) (7)

b = ys −

w, Φ(xs)


, (8)

where SV ⊂ {1, 2, . . . ,N} is the index set of the support vectors
and xs is one of the support vectors. Submitting Eq. (7) into Eq. (2)
will give the optimal f :

f (x) = ⟨w, Φ(x)⟩ + b =

N
i=1

(µi − vi)K(xi, x) + b. (9)
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