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a b s t r a c t

Weight decay method as one of classical complexity regularization methods is simple and appears to
work well in some applications for backpropagation neural networks (BPNN). This paper shows results
for the weak and strong convergence for cyclic and almost cyclic learning BPNN with penalty term
(CBP-P and ACBP-P). The convergence is guaranteed under certain relaxed conditions for activation
functions, learning rate and under the assumption for the stationary set of error function. Furthermore,
the boundedness of theweights in the training procedure is obtained in a simple and clearway. Numerical
simulations are implemented to support our theoretical results and demonstrate that ACBP-P has better
performance than CBP-P on both convergence speed and generalization ability.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A multilayer perceptron network trained with a highly popular
algorithm known as the error backpropagation (BP) has been
successfully applied to solve some difficult and diverse problems
(Haykin, 1999; Rumelhart et al., 1986). This algorithm, based on
the error-correction learning rule can be viewed as a generalization
of the least-mean-square (LMS) algorithm. There are two main
modes to implement it: batch learning, in which optimization is
carried out with respect to all training samples simultaneously,
and incremental learning,where it follows the presentation of each
training sample (Saad, 1998).

There are three different incremental BP learning strategies: on-
line learning, cyclic learning, and almost cyclic learning (Heskes
& Wiegerinck, 1996). Incremental learning strategies require less
storage capacity than batch mode learning. Due to the random
presentation order of the training samples, incremental learning
implementing the instant gradient of the error function is a
stochastic process, whereas batch mode learning corresponds to
the standard gradient descentmethod and is deterministic (Heskes
& Wiegerinck, 1996; Nakama, 2009; Wilson & Martinez, 2003).

It is well known that the general drawbacks of gradient-based
BPNN training methods are their more likely divergence and
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weak generalization. In real-world problems, the BP method is
usually prone to require the use of highly structured networks of
a rather large size (Haykin, 1999). Thus, it is requisite to reach
an appropriate tradeoff between reliability of the training and
the goodness of the model. Knowing that the network design is
statistical in nature, the tradeoff can be achieved byminimizing the
overall risk with regularization theory (Tikhonov, 1963). A general
setting is to add an extra regularization term which is called the
penalty term for BPNN (Haykin, 1999).

There are three classical different penalty terms for BPNN:
weight decay (Hinton, 1989), weight elimination (Weigend, Rumel-
hart & Huberman, 1991) and approximate smoother (Moody &
Rognvaldsson, 1997). In the weight decay procedure, the penalty
term is stated as the squared norm of the weights in the BPNN
(Hinton, 1989; Saito & Nakano, 2000). All the weights in the net-
works are treated equally. Some of the weights are forced to take
values close to zero, while other weights maintain reasonably
large values, and consequently improve the generalization of BPNN
(Haykin, 1999). In the weight elimination procedure, the complex-
ity penalty represents the complexity of the network as function of
theweightmagnitudes relative to a pre-assigned parameter (Reed,
1993). The approximate smoother approach is proposed in Moody
and Rognvaldsson (1997) for BPNN with a hidden layer and a sin-
gle output neuron. This method appears to be more accurate than
weight decay or weight elimination for the complexity regulariza-
tion of BPNN. However, it is much more computationally complex
than its counterparts (Haykin, 1999).

Below we discuss the convergence of BPNN with penalty term
from a mathematical point of view. Insofar as the satisfying
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performance in weight decay method, there are quantitative
studies of the convergence property with different BP learning
strategies (Shao, Wu & Li, 2005; Shao & Wu, 2007; Shao & Zheng,
2011;Wu, Shao & Li, 2006; Zhang,Wu & Yao, 2007; Zhang,Wu, Liu
& Yao, 2009; Zhang &Wu, 2009).

For batch mode learning, the weak convergence and mono-
tonicity are proved as a special case for the typical gradient descent
method of optimization theory. A highlight in Wu et al. (2006) is
that the boundedness of the weights between input and hidden
layers are guaranteed. As an extension, the boundedness of the to-
tal weights in the BP feedforward neural networks based on batch
learning has been proved in Zhang et al. (2007). For online learn-
ing, Zhang and Wu (2009) focuses on the linear output of BPNN,
while an extension that the activation function satisfies twice con-
tinuously differentiable is proposed in Zhang et al. (2009). The
main contribution of these two papers is to theoretically prove the
boundedness of theweights and an almost sure convergence of the
approach to the zero set of the gradient of the error function.

Assuming the training samples are supplied in random order in
each cycle (almost cyclic), themonotonicity andweak convergence
of the almost cyclic learning for BPNN with penalty term
(ACBP-P) are guaranteed based on restricted conditions for
activation functions and learning rates (Shao et al., 2005).
Additionally, the results in Shao et al. (2005) are valid for BPNN
without a hidden layer. On the basis of cyclic learning BPNN with
penalty term (CBP-P), the convergence results are proved in Shao
and Wu (2007) and Shao and Zheng (2011). A momentum term to
speed up the training procedure is considered as well in Shao and
Zheng (2011).

Within the framework of BPNN with cyclic and almost-cyclic
learning, the latest convergence results concentrate on the regular
BPNN (Wu, Wan, Cheng & Li, 2011) and on BPNN with momentum
term (Wang, Yang, & Wu, 2011) under much relaxed conditions
such as activation functions and learning rates. The training
method of BPNN based on the common gradient descent without
any additional term is considered inWu et al. (2011). Furthermore,
the strong convergence result was first proved which allows the
stationary points of error function to be uncountable somehow.
In Wang, Yang et al. (2011), weak and strong convergence
results have been obtained for BPNN with a momentum term
which performs much better than regular BPNN. None of the
earlier studies focused on convergence results for similar learning
modes with penalty term based on relaxed conditions. This paper
attempts to fill this gap.

The aim of this paper is to present a comprehensive study
for CBP-P and ACBP-P of weak and strong convergence with the
identical relaxed training conditions (Wang, Yang et al., 2011; Wu
et al., 2011), indicating that the gradient of the error function goes
to zero and theweight sequence goes to a fixed point, respectively.
In comparison to the convergence results which consider the
CBP-P and ACBP-P (Shao et al., 2005; Shao & Wu, 2007;
Shao & Zheng, 2011), quite simple and general conditions
are formulated below for the learning rate and the activation
functions to guarantee the convergence. Themain points and novel
contributions of this paper are as follows:

(1) The derivatives g ′, f ′ of the activation functions g, f are
Lipschitz continuous on R. This improves the corresponding
conditions in Shao et al. (2005); Shao and Wu (2007) and
Shao and Zheng (2011), which requires the boundedness of the
second derivatives g ′′, f ′′.

From a mathematical point of view, we mention that different
analytical tools are employed in Shao et al. (2005); Shao and Wu
(2007), Shao and Zheng (2011) andWu et al. (2006) and this study
for the convergence analysis. The differential Taylor expansion in
Shao et al. (2005); Shao and Wu (2007), Shao and Zheng (2011)

andWu et al. (2006)which requires the boundedness of the second
derivative of the activation function g , is considered, while in this
paper, we discuss the integral Taylor expansion and hence require
the Lipschitz continuity of g ′, f ′ on R (Xu, Zhang & Jing, 2009).

(2) The condition on the learning rate in this paper is extended
to a more general case:


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which is identical to those inWuet al. (2011) for cyclic learning
without penalty.

Learning rate is an important criterion in the convergence
analysis of BPNN. The convergence results in Shao and Zheng
(2011) for cyclic learning with penalty and momentum term focus
on no hidden layer feedforward neural networks, and require
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of the k-th training cycle. Basically, this condition is equivalent to
ηk = O
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. It is easy to see that the conditions on the learning rate

aremore relaxed in this paper than those in Shao et al. (2005); Shao
and Wu (2007) and Shao and Zheng (2011).

(3) The restrictive assumptions for the strong convergence in and
Shao et al. (2005), Shao and Zheng (2011) andWu et al. (2006)
are relaxed such that the stationary points set of the error
function is only required not to contain any interior point.

To obtain the strong convergence result, which means that the
weight sequence converges to a fixed point, an extra condition
is considered in Shao et al. (2005); Shao and Wu (2007), Shao
and Zheng (2011) and Wu et al. (2006): the gradient of the error
function has finitely many stationary points. Thus, this additional
assumption is a special case in this paper (cf. (A3)).

(4) The deterministic convergence results are valid for ACBP-P as
well.

We mention that CBP-P is typically a deterministic iteration
procedure in that the updating fashion is deterministic for fixed
order of samples. Due to the random order of samples in
each training cycle, the experiment shows that ACBP-P behaves
numerically better than CBP-P (Shao et al., 2005). In this paper, our
convergence results are generalizations of both the results of Shao
and Wu (2007), which considers CBP-P, and of the results of Shao
et al. (2005) and Shao and Zheng (2011), which considers ACBP-P.

Remark. Considering the batch learning BPNN with penalty term
we note that this method corresponds to the standard gradient
descent algorithm. The convergence results are valid as well once
the differential Taylor expansion in Wu et al. (2006) is replaced by
the integral Taylor expansion in this paper. In addition, a simple
and clear proof for the boundedness of the weights is presented.

(5) Illustrated experiments have been done to verify the theoret-
ical results of this paper, such as boundedness of the weights,
convergence property of BPFNN with penalty term.

Comparing to Wang, Wu, and Zurada (2011), three different
simulations have been performed to demonstrate clearly the
important properties of BPFNN with penalty term. Furthermore,
one of the classification simulations shows that ACBP-P performs
generally much better than CBP-P.

The rest of this paper is organized as follows: Section 2
introduces the two weights updating algorithms: CBP-P and
ACBP-P. The main convergence results are presented in Section 3.
The performance of the presented two algorithms are reported and
discussed in Section 4. The detailed proofs of the main results are
stated as Appendix for interested readers.

2. Algorithm description

Denote the numbers of neurons of the input, hidden and output
layers of BPNN are p, n and 1, respectively. Suppose that the
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