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a b s t r a c t

An agent-based model consists of a set of agents representing the components of a system. These agents
interact with each other according to rules designed with knowledge of the system in mind. Although
rules control the low-level interactions of agents, these models often exhibit emergent behavior at the
system level. We apply the agent-based modeling framework to functional brain imaging data. In this
model, agents are definedbynetworknodes and represent brain regions, and links representing functional
connectivity between nodes dictate which agents interact. A link between two regions may be positive or
negative, depending on the correlation in functional activity between the two regions. Agents are either
active or inactive, and systematically update based on the activity of their immediate neighbors. Their
dynamics are observed over a certain time period starting from predetermined initial configurations.
While the information received by each node is limited by the number of other nodes connected to it, we
have shown that this model is capable of producing emergent behavior dependent on global information
transfer. Specifically, the system is capable of solving well-described test problems, such as the density
classification and synchronization problems. Themodel is capable of producing a wide range of behaviors
varying greatly in complexity, including oscillationswith cycles ranging from a few steps to hundreds, and
non-repeating patterns over hundreds of thousands of time steps. We believe this wide dynamic range
may impart the potential for this system to produce a myriad of brain-like functional states.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A complex system is characterized by interconnected com-
ponents which are typically quite simple, but when assembled
as a whole exhibit emergent behavior that would not be pre-
dicted based on the behavior of each individual component alone
(Mitchell, 2009). In other words, the emergent behavior of the sys-
tem is not a simple sum of behaviors of all the constituent com-
ponents. The brain is an excellent example of a complex system.
A complete understanding of the biochemical processes that un-
derlie the behavior of an individual neuron can never produce an
explanation for processes such as decision making and emotion.
In his paper entitled More Is Different (Anderson, 1972), Anderson
makes the case that multiscale modeling approaches are neces-
sary for modeling systems in the natural world. He advised against
the reductionistic approach in which a system is condensed to
its most basic constituent, studied ad infinitum at that level, and

∗ Correspondence to: School of Biomedical Engineering and Sciences, Wake
Forest University School of Medicine, Medical Center Boulevard, Winston-Salem,
NC 27157, USA. Tel.: +1 336 716 0473; fax: +1 336 716 0798.

E-mail address: kajoyce@wakehealth.edu (K.E. Joyce).

the resultant conclusions are applied to the system at the macro-
scopic level. It is becoming increasingly apparent that multiscale
approaches will be necessary to understand many of the systems
in our universe. In fact, in work by Gu, Weedbrook, Perales, and
Nielsen (2009), an infinite square ising model was used as formal
evidence of Anderson’s assertion. In this work, the isingmodel was
used to represent a cellular automaton (CA), a two-dimensional lat-
tice of cells that communicate with adjacent neighbors. Inputs to
the CA were encoded as the ground state of the ising block, and
the model stepped through time according to an update function.
Many macroscopic features of the system were shown to be un-
decidable based solely on the microscopic properties. They con-
cluded that a reductionistic ‘‘theory of everything’’ is necessary, but
is unlikely to be solely sufficient to describe a complex systemwith
emergent behavior. Clearly such a theory of everything would be
inapplicable in the brain. However, by modeling the way neurons
interactwith each other enmasse, a bottom-upmodeling approach
may be able to reproduce some of the complex behaviors inherent
to the brain. One such approach is agent-based modeling.

An agent-based model (ABM) consists of a set of individuals,
or agents, representing the components of a system. Agents are
allowed to interact with each other according to a rule, or a
set of rules, designed with knowledge of the system in mind.
Agent-based models are most valuable in systems that exhibit
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complex emergent behavior. Although rules only control the low-
level interactions of agents, these models often exhibit emergent
behavior on the level of the system. For example, the Boids
simulation (Reynolds, 1987) is one such ABM, where the agents in
the simulation are birds, and the very simple rules they obey are
cohesion (fly close to your neighbors), separation (not too close),
and alignment (in the same direction). These simple ruleswill, over
a few iterations, form a coordinated flock out of any random initial
configuration of birds.

The brain exhibits hierarchy in both structural (Bullmore &
Sporns, 2009; Hagmann et al., 2008) and functional (Bullmore &
Sporns, 2009; Meunier, Achard, Morcom, & Bullmore, 2008; Me-
unier, Lambiotte, Fornito, Ershe, & Bullmore, 2009) organization.
Due to this hierarchical organization, the brain can be modeled at
various scales ranging from the microscale level of the individual
neuron to the macroscale level of the complete brain (Hayasaka &
Laurienti, 2010; Jirsa, Sporns, Breakspear, Deco, &Mcintosh, 2010).
A microscale model of the brain including each of approximately
300 billion neurons would be difficult to implement and to inter-
pret. Such a model would be just as complex as the brain, negating
the advantage of producing a more simplified representation. On
the other hand, amacroscalemodel at thewhole-brain scalewould
include a top-down definition of the system. Every behavior of the
system would necessarily be individually defined. Between these
two extremes lies a mesoscale model, wherein the brain model is
composed of interdependent regions performing mesoscale inter-
actions resulting in macroscale behaviors.

We introduce a brain-inspired mesoscale agent-based model
that we call the agent-based brain-inspired model (ABBM). The
model is built upon a brain network measured using functional
brain imaging data from humans. The ABBM uses rules that are
based on the microscale level of the neuron and applies those
rules at the mesoscale level of pools of neurons. These rules are
used by each mesoscale brain region to process the information it
receives and make a decision about whether to turn on or turn off.
This decision-making process is analogous to a single neuron on
the microscale integrating information received from neighboring
neurons and firing if the excitation exceeds a minimum voltage. In
this way, the ABBM uses principles from the microscale level and
applies them to the mesoscale level.

Our proposed framework is a more generalized version of
a neural network model, such as that described by Goltsev,
Abreu, Dorogovtsev, and Mendes (2010). Their model utilized a
set of excitatory and inhibitory neurons arranged as a network,
and behaviors were driven by equations. The model exhibited
oscillatory, chaotic, and critical behaviors. Other equation-based
neural network models have demonstrated transitions from
disordered chaos to global synchronization (Percha, Dzakpasu,
& Zochowski, 2005). Contrary to equation-based modeling, our
agent-based model utilizes interdependent agents driven by
cellular automaton rules. Cellular automata have been studied
thoroughly in resources such as (Bak, Chen, & Creutz, 1989; Braga,
Cattaneo, Flocchini, & Vogliotti, 1995; Cook, 2004;Wolfram, 2002).
It is typical that equation-based and agent-based models are
capable of producing similar results, but agent-based models are
often considered more intuitive as they produce results that are
more easily interpreted (Parunak, Savit, & Riolo, 1998). Edward
Fredkin has noted a distinct difference between cellular automata
and equation-based models as noted by Wright (1988)—‘‘You can
predict a future state of a system susceptible to the analytic
approach without figuring out what states it will occupy between
now and then, but in the case of many cellular automata, youmust
go through all the intermediate states to find out what the end
will be like: there is no way to know the future except to watch
it unfold’’. Some cellular automata, including Conway’s Game of
Life, have been shown to be capable of universal computation

(Bak et al., 1989; Cook, 2004), meaning that these systems are
capable of computing any computable sequence and can replicate
any computer program.

Some neural network models utilize network structure based
on real world systems, such as those in Goltsev et al. (2010),
Grinstein and Linsker (2004) and Percha et al. (2005). For example,
Grinstein and Linsker (2004) investigated the importance of the
underlying network structure in defining the system dynamics
of neural networks. Their neural network utilized Hopfield-
type dynamical rules and was engineered such that the degree
distribution of the network reflected topology that commonly
occurs in self-organized networks. This design enabled the
neural network to produce synchronous behavior and oscillatory
sequences of neural activity commonly seen in experimental
data. Likewise, the agent-based brain-inspired model studied
here is an extension of the functional brain networks that are
currently used to study the functional interactions between
brain regions. A functional brain network is a set of nodes and
pathways between nodes representing the way in which regions
of the brain communicate to perform a task. To clarify, these
connections do not necessarily represent physical white matter
tracts connecting neuronal cell bodies, but instead represent
correlations in functional activity as measured through functional
magnetic resonance imaging (fMRI). Functional brain networks
are distinct from traditional fMRI data. Traditional fMRI data
show which regions of the brain are active during a particular
task. In contrast, functional brain networks consider all regions
of the brain simultaneously by treating the brain as a network
of interconnected and interdependent regions. The distinct
advantage of a network-based approach of modeling the brain is
that it does not focus on individual brain regions, but evaluates
the interactions between all brain regions. This network-based
approach has enabled us for the first time tomodel brain dynamics
as described in this paper. In our model, agents are defined
by functional network nodes representing brain regions, and
functional links betweennodes dictatewhich agents are allowed to
interact. The utilization of functional brain networks derived from
human data is a major strength of this approach.

While the information received by each node is limited by the
number of other nodes connected to it, we show here that this
model is capable of producing emergent behavior at the level of
the system. We apply this system to well-described test problems
and additionally demonstrate the ability of the model to produce
a wide range of behaviors. A combination of true brain network
structure and cellular automata rules results in model output with
a wide dynamic range, and imparts the potential to produce a
myriad of brain-like functional states.

2. Methods

2.1. Framework for an agent-based brain-inspired model

The agent-based brain-inspired model (ABBM) is an agent-
based model with connectivity structure that is derived from
brain network data. The underlying brain network dictates which
brain nodes can interact with one another by explicitly specifying
the existence of connections. The brain nodes can be selected to
represent the brain network at different levels, from the level of
neurons to anatomical parcellation of the cortex. In this work, each
node represents a distinct brain anatomical area defined by the
AAL (automated anatomical labeling) atlas (Tzourio-Mazoyer et al.,
2002), and connections between the nodes were determined using
fMRI time series data as is described, for example, in Bullmore and
Sporns (2009). Although we used fMRI data to define connections,
the framework may be applied to any functional or structural
network derived from other imaging modalities or direct methods
such as histology.
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