
Neural Networks 25 (2012) 21–29

Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Joining distributed pattern processing and homeostatic plasticity in recurrent
on-center off-surround shunting networks:
Noise, saturation, short-term memory, synaptic scaling, and BDNF
Ben Chandler, Stephen Grossberg ∗

Center for Adaptive Systems, Department of Cognitive and Neural Systems, Boston University, 677 Beacon Street, Boston, MA, 02215, United States

a r t i c l e i n f o

Article history:
Received 31 December 2010
Revised and accepted 29 July 2011

Keywords:
On-center off-surround network
Shunting dynamics
Noise-saturation dilemma
Homeostatic plasticity
Synaptic scaling
Short-term memory
Winner-take-all
Sigmoid signal
Anchoring
Automatic gain control
BDNF
Recurrent competitive field

a b s t r a c t

The activities of neurons varywithin small intervals that are boundedboth above andbelow, yet the inputs
to these neurons may vary many-fold. How do networks of neurons process distributed input patterns
effectively under these conditions? If a large number of input sources intermittently converge on a cell
through time, then a serious design problem arises: if cell activities are sensitive to large inputs, thenwhy
donot small inputs get lost in internal systemnoise? If cell activities are sensitive to small inputs, thenwhy
do they not all saturate at theirmaximumvalues in response to large inputs and thereby become incapable
of processing analog differences in inputs across an entire network? Grossberg (1973) solved this noise-
saturation dilemma using neurons that obey the membrane, or shunting, equations of neurophysiology
interacting in recurrent and non-recurrent on-center off-surround networks, and showed how different
signal functions can influence the activity patterns that the network stores in short-term memory. These
results demonstrated that maintaining a balance between excitation and inhibition in a neural network is
essential to process distributed patterns of inputs and signals without experiencing the catastrophies of
noise or saturation.However, shunting on-center off-surroundnetworks only guarantee that cell activities
remain sensitive to the relative sizes of inputs and recurrent signals, but not that they will use the full
dynamic range that each cell can support. Additional homeostatic plasticity mechanisms are needed to
anchor the activities of networks to exploit their full dynamic range. This article shows howmechanisms
of synaptic scaling can be incorporated within recurrent on-center off-surround networks in such a
way that their pattern processing capabilities, including the ability to make winner-take-all decisions,
is preserved. This model generalizes the synaptic scaling model of van Rossum, Bi, & Turrigiano (2000)
for a single cell to a pattern-processing network of shunting cells that is capable of short-term memory
storage, including a representation of how BDNF may homeostatically scale the strengths of excitatory
and inhibitory synapses in opposite directions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction: Balancing excitation and inhibition to process
patterns in neural networks

The activities of neurons vary within small intervals that are
bounded both above and below, yet the inputs to these neu-
rons may vary many-fold. How do networks of neurons process
distributed input patterns effectively under these conditions? A
classical example of this situation occurs during the visual percep-
tion of brightness. The retina receives luminance signals, which
are a product of reflectances and illumination levels (Hurlbert,
1986; Lambert, 1760;Wyszecki & Stiles, 1982), from objects in the
world. Surface reflectances, or the percentages of light reflected by
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a surface in each wavelength, provide information about the ma-
terial properties of objects. The spatiotemporal patterning of these
reflectances across a network of neurons represents objects in a
scene. From these patterns of luminance signals, the visual sys-
tem is able to estimate object reflectances across a scene by com-
pensating for an immense dynamic range of mean illuminations
throughout each day and night, and for a wide dynamic range of
luminances across each scene.

This process of ‘‘discounting the illuminant’’ is not suffi-
cient, however, to efficiently see the world, because illuminant-
discounted signalsmay represent only the relative amounts of light
that each object surface reflects to the eyes. For effective percep-
tion, the brain also needs to compute an absolute lightness scale,
by a process called ‘‘anchoring’’, that can represent the full-range
of experience from dim moonlight to dazzling sunlight (Gilchrist,
1977, 1980; Gilchrist & Bonato, 1995;Wallach, 1948, 1976). Gross-
berg and Hong (2006) and Hong and Grossberg (2004) have de-
veloped a neural model of anchoring to explain and quantitatively
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simulate a variety of perceptual and brain data about perceived
lightness.

The lightness anchoring problem is a special case of a much
more general problem that all neurons must face throughout life.
Indeed, at every stage of neural processing, neuronal networks
receive patterned inputs that representmany types of information.
Moreover, many different input pathways may converge on a
single target cell. Suppose that activities, or short-term memory
(STM) traces, of cells in a network are defined by x1, x2, . . . , xn.
Each of the activities xi may fluctuate within fixed finite limits.
Such a bounded operating range for each xi has the advantage that
fixed decision criteria, such as output thresholds, can be defined.
On the other hand, if a large number of input sources intermittently
converge on a cell through time, or if an individual input can vary
greatly in its intensity through time, then a serious design problem
arises: If the activities xi are sensitive to large inputs, then why do
not small inputs get lost in internal cellular noise? If the activities
xi are sensitive to small inputs, then why do they not all saturate
at their maximum values in response to large inputs and thereby
become incapable of processing analog differences in inputs across
an entire network?

Grossberg (1973) has called this problem the noise-saturation
dilemma. Grossberg (1973) proved mathematically that neurons
which obey the membrane, or shunting, equations of neurophys-
iology (Hodgkin, 1964) can solve the noise-saturation dilemma if
their bottom-up inputs and recurrent interactions are organized
in on-center off-surround networks. Such a network is also called
a recurrent competitive field, or RCF. In other words, RCFs keep
their stored activities large enough to avoid being distorted by
internal cellular noise, yet not so large as to activate cells maxi-
mally, saturate their responses, and destroy a record of analog in-
put differences. A shunting on-center off-surround network can
thus contrast-normalize and preserve the analog sensitivity of its
cell activities in response to an input pattern, no matter how large
the inputs to the network may be chosen.

After this initial discovery, theorems and computer simulations
were provided for increasingly complicated non-recurrent and re-
current shunting on-center off-surround networks to demonstrate
how they respond when their interaction strengths, feedback sig-
nal functions, and other network parameters are varied. The ear-
liest analyses of this kind include those of Ellias and Grossberg
(1975) and Grossberg and Levine (1975, 1976). Specialized shunt-
ing networks have hereby been classified in terms of their spe-
cific pattern processing and memory storage properties, thereby
providing a storehouse of networks to serve as a resource for
explaining and predicting a wide range of behavioral and brain
data. Such networks have also helped to solve technological prob-
lems wherein stable content-addressable memories are needed.
Increasingly general theorems have been proved, using both Lya-
punov functions and functionals, about how recurrent coopera-
tive–competitive networks can be designed so that they always
converge to stable limiting patterns (e.g., Cohen & Grossberg,
1983 (Cohen–Grossberg theorem and Lyapunov function); Gross-
berg, 1978a, 1978b, 1980). These theorems clarify what design fea-
tures are essential for effective pattern processing across many
specialized networks. The results include the Lyapunov function
that was popularized by Hopfield (1984).

All of these results demonstrated that maintaining a balance
between excitation and inhibition in a neural network is essential
for the network to be able to process distributed patterns of
inputs and signals without experiencing the catastrophies of
noise or saturation. The results also show that the simplest
properties of shunting on-center off-surround networks can only
ensure that cell activities remain sensitive to the relative sizes
of inputs and recurrent signals, but not that they will use the
full dynamic range that each cell can support. In other words,

additional mechanisms are needed to ‘‘anchor’’ the activities of
networks to exploit their full dynamic range. This article shows
how such anchoring can be achieved by incorporating synaptic
scaling mechanisms of homeostatic plasticity within recurrent on-
center off-surround networks in such a way that their pattern
processing capabilities, including the ability to make winner-take-
all decisions, is preserved. These results suggest how BDNF may
homeostatically scale the strengths of excitatory and inhibitory
synapses in opposite directions (Rutherford, Nelson, & Turrigiano,
1998).

2. How stored patterns depend on feedback signal functions in
a recurrent competitive field

The theorems of Grossberg (1973) analyzed how the feedback
signal functions in recurrent on-center off-surround networks
whose cells obey membrane, or shunting, equations (Fig. 1(a))
transform input patterns before they are stored in short term
memory as equilibrium activity patterns. In these simplest
networks, the on-center of self-excitatory feedback is narrow, and
the off-surround of recurrent lateral inhibition reaches all other
cells. Such a network is defined by

ẋi = −Axi + (B − xi)(Ii + f (xi)) − xi


Ji +

−
k≠i

f (xk)


. (1)

In (1), xi is the activity of the ith cell, or cell population; A is
the passive decay rate; B is the excitatory saturation point of cell
activity; Ii is the excitatory input to the ith cell; f (xi) is the on-
center positive feedback signal; Ji is the inhibitory input to the ith
cell; and

∑
k≠i f (xk) is the negative feedback from the off-surround.

Eq. (1)may be derived from the following equation for cell activity,
or voltage V (t):

C
d
dt

V = (V p
− V )gp

+ (V+
− V )g+

+ (V−
− V )g−, (2)

where C is capacitance; the constants V+, V−, and V p are excita-
tory, inhibitory, and passive saturation points of V , respectively,
and g+, g−, and gp are conductances that can be changed by inputs
(Hodgkin, 1964). In (1), xi = V , A = g+, V−

= V+
= 0, B = V+,

and g+ and g− are the total on-center and off-surround inputs, re-
spectively. The choice of the feedback signal function f determines
how an input pattern is transformed before it is stored in short-
termmemory (i.e., before the network reverberates the stored pat-
tern for all time), and indeedwhether itwill be stored in short-term
memory at all.

The theorems in Grossberg (1973) assumed that inputs were on
until time t = 0, when they were shut off to allow the network
to transform and store the input pattern in short-term memory
using its recurrent interactions. The theorems included all possible
initial values xi(0) of the activities, corresponding to the effect
of all possible input patterns. As shown in Fig. 1(b), if the signal
function is linear (e.g., f (w) = Aw), then the initial input pattern is
preserved. If the signal function is slower-than-linear (e.g., f (w) =

Aw/(B + w)), then all differences in the input are eliminated as
time goes on, and a uniform pattern of activities is stored. In both
of these cases, noise is amplified. If a signal function is faster-than-
linear (e.g., f (w) = Aw2), then noise is suppressed. In fact, noise
is suppressed so vigorously that only the cell, or cell population,
with the largest input survives the competition, and its activity is
stored in short termmemory. This is thus a winner-take-all (WTA)
network.

In order to enable cells with activities less than the maximum
to be stored in short-termmemory, a sigmoid cell function suffices
(e.g., f (w) = Aw2/(B2

+ w2)), because it is a hybrid of the
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