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In arecent communication, Sacramento and Wichert (2011) proposed a hierarchical retrieval prescription
for Willshaw-type associative networks. Through simulation it was shown that one could make use of low
resolution descriptor patterns to decrease the total time requirements of recalling a learnt association.
However, such a method introduced a dependence on a set of new parameters which define the structure
of the hierarchy. In this work we compute the expected retrieval time for the random neural activity
regime which maximises the capacity of the Willshaw model and we study the task of finding the
optimal hierarchy parametrisation with respect to the derived temporal expectation. Still in regard to
this performance measure, we investigate some asymptotic properties of the algorithm.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the strictest technical sense, an associative memory model
is designed to solve a variation of the classical nearest neighbour
determination problem. Instead of finding a solution for the
original labelled classification task formulation (Cover & Hart,
1967; Fix & Hodges, 1951; Minsky & Papert, 1969), an associative
memory is a system that stores information about a finite set of M
associations of the form

S={xr—>y"):nu=1,...,M}, (1)

with most memory models assuming the patterns are binary
vectors, i.e., X € {0, 1}" and y € {0, 1}". Given a possibly corrupt
or incomplete pattern X € {0, 1}™, the system should be able to
find the best-matching (or rather, the ‘nearest neighbour’) x* with
respect to a desired similarity metric and then return a pattern
y € {0, 1}" ideally corresponding to the originally stored y*. Thus,
the original association (x* + y*) ought to be restored through a
robust recall process.

Three different yet closely related tasks are usually identified
with the above process: whenn = 1and m > n, the memory
solves a binary classification problem over the labels ‘known’ and
‘unknown’ (learnt patterns being associated with the former) and
is said to perform familiarity discrimination (Bogacz & Brown,
2003; Bogacz, Brown, & Giraud-Carrier, 2001; Greve, Sterratt,
Donaldson, Willshaw, & van Rossum, 2009); whenm = nand Vu :
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x* = y* an autoassociative function is carried out and the memory
is expected to perform pattern completion or correction; finally,
the case of arbitrary m, n and x*, y* is called heteroassociation.
The latter is most easily comparable with a standard von Neumann
computer memory.

The general quality of a neural associative memory implemen-
tation can be assessed with respect to several quantities. The most
addressed in the literature is the storage capacity (Amit, Gutfreund,
& Sompolinsky, 1985; Gardner, 1988; Knoblauch, Palm, & Sommer,
2010; Palm, 1980; Palm & Sommer, 1992; Willshaw, Buneman, &
Longuet-Higgins, 1969), which is typically measured through the
critical pattern capacity «. (simply given by a normalisation of the
number of patterns M over the number of content neurons n) or
through the more general network capacity C, measured in bits per
synapse (bps) and defined as the maximal mutual Shannon infor-
mation (Cover & Thomas, 2006; Shannon, 1948) between stored
and retrieved vectors I(x', ..., xM;y!, ..., y") normalised over
the count of synaptic contacts required by the network. The latter
is usually preferable since it takes into account both the required
resources and the information content of the patterns.

Another quantity of interest is the expected time necessary
for the learning and retrieval processes to terminate, generally
presented as a count of elementary operations and as a function
of some of the parameters which define the memory task. The
temporal requirements of an associative memory model deserve
attention from both the technical and biophysical perspectives,
partly determining the model’s efficiency. From a purely algorith-
mic point of view, the pattern recognition community is currently
facing the challenge of solving as quickly as possible the near-
est neighbour determination problem in high dimensional space
(large m, n) and for high pattern loads (large M), to cope with the
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increase in size of modern data sets. When the analogy with bio-
logical neural networks is to be taken in consideration, the tempo-
ral efficiency is equally important as it is linked to the energetic
requirements of membrane potential determination (Knoblauch
etal., 2010).

While attempting to solve the associative memory task using
a neural computation approach a lot of effort has been placed in
developing and studying recurrent networks (i.e., with feedback
couplings), as for finite systems they can provide stronger error
tolerance to pattern noise through an increase in the size of
the basins of attraction (Amit et al., 1985; Derrida, Gardner, &
Zippelius, 1987; Gardner, 1988; Gardner-Medwin, 1976; Golomb,
Rubin, & Sompolinsky, 1990; Hopfield, 1982; Kosko, 1987; Palm &
Sommer, 1992; Sommer & Palm, 1999), in exchange for additional
iterations during the retrieval process.

If our aim is the least computational effort, it is known that
under the sparse random coding regime (Barlow, 1972; Field,
1994; Olshausen & Field, 2004) the simpler Willshaw net achieves
a high storage capacity (viz., C = log2 =~ 0.7 bits per synapse
in the limit of m,n — o0) using a biologically plausible local
learning rule of the Hebbian type and a parallel ‘single-shot’
retrieval prescription (Amari, 1989; Knoblauch et al., 2010; Nadal
& Toulouse, 1990; Palm, 1980; Steinbuch, 1961; Willshaw et al.,
1969). Besides allowing for high storage capacities, the coding
restriction on the ¢, pseudo-norm of the pattern vectors (or,
equivalently, on the £; norm since we assume the patterns are
binary) imposed by the sparseness requirement also reduces the
temporal complexity of learning and retrieval and seems to be in
accordance with the signalling and maintenance energy budget of
the mammalian brain (Laughlin & Sejnowski, 2003; Lennie, 2003;
Levy & Baxter, 1996).

Due to the inherently parallel synchronous update mechanism,
the temporal benefits of the single-shot retrieval procedure
employed by the Willshaw model can only be fully exploited
using specialised hardware constructs. Attempting to decrease
the retrieval time on sequential computer implementations, a
recent communication suggested the use of a hierarchical retrieval
prescription in order to take advantage of the sparse structure of
the stored patterns (Sacramento & Wichert, 2011).

However, the proposed model introduced a dependence on
a new set of integer parameters which defined the hierarchy,
and were obtained through exhaustive combinatorial search. It
remained unclear whether this problem was tractable for high
dimensional pattern spaces, and whether a heuristic approach
could be derived in order to avoid the integer constrained
optimisation. In this work we address these issues and compute
refined time expectations for finite memories. En passant, we also
show that asymptotically the hierarchical refinement procedure
reduces the temporal complexity of the retrieval process when
compared with the original single-layer network.

The rest of this paper is organised as follows. In Section 2, we
review the network model presented in Sacramento and Wichert
(2011) and derive exact expectations for the time requirements
of learning and retrieval. Then, in Section 3, we analyse the
optimisation task of determining the hierarchical configuration
which minimises the time expectation we obtain. We show that
even though the problem is difficult to solve analytically, the
solution space grows with a polynomial of the pattern space
dimension and can thus be tackled through enumeration. We also
provide a heuristic method to solve the task and verify its validity
empirically for several network configurations.

2. Model characterisation

In the first part of this work we will see how associative
networks of the Willshaw type use a kind of plasticity (namely

synaptic) and a local Hebbian learning rule to store and recall
memory traces. After defining the equations which govern the
learning and retrieval processes of the original single-layer model
and its hierarchical variant, we will change focus to the statistical
characterisation of their temporal requirements. Following the
algorithm analysis tradition, we will adopt as our time measure
a simple count of the number of necessary operations that either
a sequential computer or a specialised hardware construct can
perform in constant O(1) time. Asymptotic comparisons using
Bachmann-Landau notation can then be made, as well as finite
numerical evaluations for particular cases. This approach has
found widespread use across the literature, as it is mathematically
tractable and abstract enough to establish a comparison between
different models and implementation architectures.

2.1. Network equations for learning and retrieval

The original Willshaw model is a single-layer neural network
comprising two populations of McCulloch-Pitts binary threshold
neurons (McCulloch & Pitts, 1943): an address population of
m neurons capable of establishing synaptic connections with n
neurons which form the content population. We can then interpret
the silent-firing (0-1) activity patterns of each set of neurons at a
given synchronous time frame as our binary input (address) and
output (content) vectors.

During the learning phase, we assume each pair (x*, y*) from
S is presented to the network independently at time w. A Hebbian-
type learning rule is applied and formation of synapses can occur
as a consequence of new stimuli. Willshaw networks employ a
particular non-additive clipped Hebb rule, where the synaptic
strength factor is disregarded, i.e., we only care to check whether a
synapse between any two neurons i and j is either present or not.
Thus, the entire state of a network can be represented by a binary
weight matrix W € {0, 1}™*", where W;; = 0 denotes an absent
synapse from pre-synaptic neuron i to post-synaptic neuron j and
Wj; = 1a present one. After learning the M associations of S, the
entries of the synaptic connectivity matrix are then given by

M
W;; = min (le?yf) (2)
n=1

which results in bidirectional synapses Vi,j, W; = Wj; for the
autoassociative case of m = nand Yu, x* = y*.

Notice how this learning prescription leads to distributed
storage, in the sense that each synaptic contact Wj can store
information about more than one pattern pair. It is also the
simplest possible realisation of the hypothesis of Hebb (1949), as
the synaptic update procedure is local and bounded. Note that due
to the nonlinearity of the rule, S cannot in general be recovered
from W.

The retrieval process starts when the address population fires
according to a certain cue pattern X. The activity state § of the
content neuron population which will yield the output pattern of
the network must then be updated. Each unit j computes (locally)
its dendritic potential, corresponding to the sum of the incoming
excitatory signals,

m

Sj = Z Wij)?is (3)
i=1

over which a nonlinear activation function is applied

yj = Hls; — ©], (4)

where H is the Heaviside step function. Note that the parameter
©® determines the highly nonlinear threshold operation which de-
noises the output and its choice will critically influence the qual-
ity of the recovered pattern y. Optimal threshold determination,
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