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The ability to predict human motion is crucial in several contexts such as human tracking by computer
vision and the synthesis of human-like computer graphics. Previous work has focused on off-line
processes with well-segmented data; however, many applications such as robotics require real-time
control with efficient computation. In this paper, we propose a novel approach called real-time stylistic
prediction for whole-body human motions to satisfy these requirements. This approach uses a novel
generative model to represent a whole-body human motion including rhythmic motion (e.g., walking)
and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase)
dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles
in humans. A real-time adaptation algorithm was derived to estimate both state variables and style
parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple
modification, the algorithm allows real-time adaptation even from incomplete (partial) observations.
Based on the estimated state and style, a future motion sequence can be accurately predicted. In our
implementation, it takes less than 15ms for both adaptation and prediction at each observation. Our real-
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time stylistic prediction was evaluated for human walking, running, and jumping behaviors.
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1. Introduction

Over the last decade, a considerable number of studies have
been conducted on learning the generative models of human
motion for modeling, prediction, and recognition (Howe, Leventon,
& Freeman, 2000; Li, Wang, & Shum, 2002; Ormoneit, Sidenbladh,
Blank & Hastie, 2001; Pavlovic, Rehg & MacCormick, 2000;
Sidenbladh, Black & Fleet, 2000; Urtasun, Fleet, & Fua, 2006;
Urtasun, Fleet, Hertzmann & Fua, 2005; Wang, Fleet, & Hertzmann,
2008). A significant limitation of these methodologies is that they
cannot explicitly consider the natural variations of human motions
in the generative model, widely referred to as style (Brand &
Hertzmann, 2000; Grochow, Martin, Hertzmann & Popovic, 2004;
Hsu, Pulli, & Popovic, 2005; Shapiro, Cao, & Faloutsos, 2006; Taylor
& Hinton, 2009; Torresani, Hackney & Bregler, 2006; Wang, Fleet, &
Hertzmann, 2007). For example, as illustrated in Fig. 1, even for an
individual, each walking motion sequence has a distinct walking
style. These differences can be much larger between different
individuals. Therefore, to achieve highly accurate prediction for
a newly observed motion sequence, adaptation of the generative
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model to the motion sequence by capturing the style of the
sequence is necessary.

While most previous studies have focused on off-line processes
with well-segmented data, many robotics applications (e.g.,
human-robot interaction (Onishi, Luo, Odashima, Hirano, Tahara
& Mukai, 2007), imitation learning by humanoids (Ijspeert,
Nakanishi, & Schaal, 2002; Inamura, Toshima, & Nakamura, 2002;
Riley, Ude, Wada, & Atkeson, 2003) and powered suits (Fukuda,
Tsuji, Kaneko, & Otsuka, 2003; Kawamoto, Kanbe, & Sankai,
2003)) require real-time control with high accuracy and efficient
computation in the prediction procedure.

In this paper, we propose a novel approach called real-time
stylistic prediction for whole-body human motions. Unlike previous
studies (Brand & Hertzmann, 2000; Taylor & Hinton, 2009; Wang
et al.,, 2007), as illustrated in Fig. 2, in our approach the generative
model adapts to a newly observed motion sequence by estimating
its style by a real-time process. Being able to perform this process
in real-time is based on (1) the simple structure of the generative
model and (2) the adaptation algorithm which requires small
computational effort. We propose a generative model for whole-
body human motion that is composed of a low-dimensional state
(phase) dynamics and a two-factor (phase dependent observation
bases and style parameter) observation model to capture the
diversity of motion styles in humans. We also present a learning
procedure to acquire the model from a variety of motion sequences
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Fig. 1. Illustration of style in human motion sequences. Ten walking phase-aligned
sequences by two individuals are overwritten in order of phase. The style in walking
behavior is considered as a control variable for the spatial variations.

including a diversity of motion styles. A real-time adaptation
algorithm was derived using an on-line Expectation-Maximization
(EM) algorithm for computationally efficient inference of both the
corresponding state variables and the style parameter from non-
stationary unlabeled sequential observations. Moreover, with a
simple modification, the algorithm allows real-time adaptation
even from incomplete (partial) observations. Such applicability of
the adaptation algorithm for partial observations is very important
in a practical sense because we often meet situations where
some elements of the observations are missing due to the limited
number of sensors available or occlusions (Chai & Hodgins, 2005).
Based on the estimated state and style, the generative model can
accurately predict a future motion sequence.

On the other hand, most of the existing models that explicitly
estimate the style of motion can achieve neither real-time adapta-
tion nor non-stationary motion estimation since the inference al-
gorithm requires large computational effort (Brand & Hertzmann,
2000; Ormoneit et al., 2001; Sidenbladh et al., 2000; Taylor & Hin-
ton, 2009; Urtasun & Fua, 2004; Wang et al., 2007).

The organization of this paper is as follows. In Section 2,
we present a novel generative model to represent a whole-
body human motion including rhythmic motion (e.g., walking)
and discrete motion (e.g., jumping). We also present a learning
procedure to acquire the model from a variety of motion sequences
including a diversity of motion styles. In Section 3, a real-time
adaptation algorithm is derived by applying an approximated
EM algorithm to the generative model. Moreover, we present a
simple modification in the adaptation algorithm, which allows
real-time adaptation even from incomplete (partial) observations.
A real-time prediction method of future motion sequence based
on the estimated state and style is also presented. In Section 4,
the effectiveness of our real-time stylistic prediction is validated
for human walking, running, and jumping behaviors with motion
capture data. Section 5 concludes this paper.

2. Learning generative model

This section describes the proposed generative model and a
learning procedure for the model with a stylistic data set.

2.1. Generative model for whole-body human motions

We first define the notation of the proposed generative model.
x € R%is the state variable,y € RP is the observation and the prob-
ability distribution p(y;|X;; w) is the observation model. p(X¢11|X;)
is the state-transition probability distribution. The parameter vec-
torw € R is an additional latent variable that controls the spa-
tial variation of observations. We call this the style parameter. Its
graphical model is depicted in Fig. 3. For periodic and discrete mo-
tions, we explicitly define the state variable x as
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That is, we define the state variable x by phase ¢ as a point on a one
dimensional sphere in two dimensional Euclidean space ¢ = ¢ €

(Rhythmic)
(Discrete).
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Fig. 2. Illustration of the real-time adaptation and prediction of the generative
model for a non-stationary motion sequence with styles (walking behaviors). The
test sequence consists of three motions, walking, running and striding generated
by different individuals. The solid human figure is as observed and the dashed one
is the predicted motion as a result of adaptation of the generative model to the
observation sequence. The adaptation is achieved by on-line EM incrementally with
little computation at each observation. For all motions, the model is rapidly adapted
to the style of the recent test sequence since the time-forgetting factor effectively
forgets past observations.

S C R2 and its velocity w = v to represent its periodicity of rhyth-
mic motions, similar to Ormoneit et al. (2001) and Urtasun and Fua
(2004). We also define the phase ¢ as a point on a one dimensional
closed line segment ¢ = p € L for discrete motions to represent its
non-periodicity (discreteness). The explicit use of these assump-
tions in the generative model yields the low-dimensional state
variable X. Moreover, as presented in the next section, it allows a
simple learning algorithm for the generative model from data.

Based on the above assumptions, we conclude that the state-
transition model and the observation model are modeled by
Gaussian distributions as:

PXes1lXe) = N (ux(Xt), Zx(Xr)), (2)
P(Ve|zZe; W) = N (1y(Ze; W), Xy (Z; W)), (3)
where

_ _ Jlcos(¢) sin(¢)]" (Rhythmic)
z=gx) = {¢[ ' ‘ (Discrete) (4)

and the observation model is defined as a probabilistic mapping
from a phase ¢, (as z;) to an observation y;. The velocity of phase
w; governs the temporal variation of the time-series, that is, it
controls the velocity of human motions generated by the model.
For rhythmic motions, z; = g(¢;) € R? represents a point on a
manifold S in R? where the radius is r = 1 and the angle is ¢;.
This state representation allows us to approximately measure the
geodesic distance between points on S as the Euclidean distance in
R?. For discrete motions, z; is the equivalent of ¢;.!

2.2. Learning procedure with a stylistic data set

The learning procedure assumes we have multiple human
motion sequences including a diversity of motion styles. Let Y° =
[V} - - Vi) )" € REO*P denote a time-invariant motion sequence
with a distinct style, where s € {1,2,...,S} is the style index
in which each value indicates a corresponding distinct style, ¢ €
{1,2, ..., C(s)} is the content index that corresponds to the phase

1 For the case of a discrete motion, z; is a scalar; however, it is kept as a vector
notation for simplicity of the overall description.
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