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a b s t r a c t

To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing
adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using
a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL
algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer
simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network
(PRNN) and recurrent neural network (RNN) equalizers.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years,most proposals for chaos-based communication
systems have been based on the assumption of a rather
idealized communication environment, in which signals are trans-
mitted without distortion and with only a moderate added noise
(Feng & Tse, 2001; Gencay & Liu, 1997; Leung, 1998). However,
in actual communication environments, the signals at the receiver
end can be seriously impaired by non-ideal channel characteris-
tics and noise, especially nonlinear distortion introduced by the
modulation/demodulation process (Feng & Lu, 2002). To compen-
sate for the distortion, several approaches have been proposed
in chaos-based communication systems, such as the radial basis
function (RBF)-based equalizer (Feng & Tse, 2001; Xie & Leung,
2003, 2005), recurrent neural network (RNN)-based equalizer
(Feng & Lu, 2002; Feng, Tse, & Lau, 2003), etc. The RNN can yield
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smaller structures than nonrecursive neural networks in the same
way that infinite impulse response (IIR) filters can replace longer
finite impulse response (FIR) filters. Therefore, the local/global re-
currence and internal/external feedback of RNNs enable them to
acquire a state representation, which makes them suitable for
application to adaptive equalization of communication channels
(Kechriotis, Zervas, & Manolakos, 1994a). Though the RNN equal-
izer has shown better performance than a linear equalizer, the
major disadvantage of heavy computational loads limits its ap-
plications. To reduce the computational complexity of the RNN,
Haykin and Li proposed the pipelined recurrent neural network
(PRNN), which is an extension of the conventional RNN, in 1995
(Haykin & Li, 1995). The design is based on the principle of divide-
and-conquer. In other words, a complex RNN with a large num-
ber of neurons can be divided into a number of simpler small-scale
RNN modules with low computational load. Recently, two novel
adaptive nonlinear filters with a modular architecture were pro-
posed to reduce the computational complexity of the Volterra fil-
ter (Zhang & Zhao, 2010; Zhao & Zhang, 2009). Consequently, with
this in mind, a novel joint-processing adaptive nonlinear equal-
izer based on the pipelined recurrent neural network, the JPRNN,
is proposed in this paper. This equalizer inherits the merits of the
PRNN but has better performance in chaos-based communication
systems and less computational complexity.

2. Low complexity JPRNN equalizer

In this paper, a JPRNN equalizer for a nonlinear channel in
chaotic communication systems is designed, as shown in Fig. 1.
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Fig. 1. A digital transmission system with the JPRNN equalizer.

Fig. 2. A JPRNN withM modules.

The transmitted signal produced by the chaotic modulator is
denoted by r(n). The combined effect of the transmitter filter, the
transmission medium and other components are included in the
‘Channel’, whose output at time instant nmay be written as

s1(n) =

Nf−
i=0

h(i)r(n − i) (1)

where h(i) is the channel tap value and Nf is the length of the FIR
channel model. The ‘NL’ block represents the nonlinear distortion
of the symbols in the channel, and its output may be written as
follows

s2(n) = ψ(s1(n)) (2)

whereψ(·) is a nonlinear function generated by the ‘NL’ block. The
output s2(n) of the channel is subjected to additive white Gaussian
noise η(n) (AWGN) with zero mean and variance σ 2. Then this
corrupted signal is received at the receiver end, and is given by
x(n) = s2(n) + η(n). The desired signal d(n) is defined by d(n) =

r(n−D), where ‘D’ denotes the transmission delay associated with
the physical channel. To reconstruct r(n) from x(n), our scheme is
based on Taken’s embedding theory using the JPRNN, described as
follows.

Fig. 2 shows the structure of the JPRNN equalizer with M
models, which includes the nonlinear subsection and a linear
combiner. The cascaded RNN of the nonlinear subsection provides
pre-processing for the linear combiner. Moreover, each RNN of
the nonlinear subsection can provide a local interpolation for
M sample points, the final linear combiner presents a global
interpolation with good localization properties. In Fig. 2, each
module is designed as a RNN with q neurons; it has q − 1
neuron outputs as feedback to its input and the remaining neuron
output (the first neuron output) is applied directly to the next
module. In the case of the nonlinear section in the JPRNN equalizer,

module M is a fully connected RNN, and a one-unit delayed signal
of module M ’s output is assumed to be fed back to the input.
Information flowing into and out of the modules proceeds in a
synchronized fashion. Therefore, all the modules of the equalizer
operate similarly in that they all have exactly the same number
of external inputs and feedback signals, which are properly timed.
Moreover, all the modules are designed to have exactly the same
(p + q + 1)-by-q synaptic weight matrix H(n). An element hk,l(n)
of this matrix represents the weight of the connection to the lth
neuron from the kth input node. Therefore, theweightmatrixH(n)
may be written as:

H(n) = [h1(n), . . . , hk(n), . . . , hq(n)]T (3)
where the superscript T denotes transposition, and hk(n) is a (p +

q + 1)-by-1 vector defined by

hk(n) = [h1,k(n), h2,k(n), . . . , hp+q+1,k(n)]T , 1 ≤ k ≤ q. (4)
In addition, the sequential use of a nonlinear subsection and

linear combiner forms an efficient combination that is capable of
extracting both the linear and nonlinear relationships underlying
the source signal to overcome nonlinear distortion.

The detailed structure ofmodule iwith qneurons and p external
inputs is illustrated in Fig. 3. For the ith module, the external
input signal described by the p-by-1 vector Xi(n) at the nth time
is defined by

Xi(n) = [x(n − i), x(n − (i + 1)), . . . , x(n − (i + p − 1))]T (5)
and is delayed by Z−iI at the input of the module i, where Z−i

denotes the delay operator by i time units, I is the (p × p)-
dimensional identity matrix, and p is the order of the adaptive
nonlinear equalizer. The other input vector ri(n) applied tomodule
i is the q-by-1 feedback vector

ri(n) = [yi+1,1(n), r̂i(n)]T , i = 1, 2, . . . , (M − 1) (6)
where yi+1,1(n) is the first neuron output of the previous module
i + 1.
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