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a b s t r a c t

This paper is concerned with the state estimation problem for a class of discrete-time stochastic neural
networks (DSNNs) with random delays. The effect of both variation range and distribution probability
of the time delay are taken into account in the proposed approach. The stochastic disturbances are
described in terms of a Brownian motion and the time-varying delay is characterized by introducing
a Bernoulli stochastic variable. By employing a Lyapunov–Krasovskii functional, sufficient delay-
distribution-dependent conditions are established in terms of linear matrix inequalities (LMIs) that
guarantee the existence of the state estimator which can be checked readily by the Matlab toolbox. The
main feature of the results obtained in this paper is that they are dependent on not only the bound but
also the distribution probability of the time delay, and we obtain a larger allowance variation range of the
delay, hence our results are less conservative than the traditional delay-independent ones. One example
is given to illustrate the effectiveness of the proposed result.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Various classes of neural networks have been increasingly
studied in the past few decades, due to their practical importance
and successful applications in many areas such as combinatorial
optimization, signal processing and communication (Elanayar &
Shin, 1994; Fantacci, Forti, Marini, & Pancani, 1999; Haykin, 1998;
Joya, Atencia, & Sandoval, 2002). These applications greatly depend
on the dynamic behaviors of the underlying neural networks. In
reality, time-delay systems are frequently encountered in various
areas, and a time delay is often a source of instability and
oscillators in a system. So, dynamics in a neural network often
have time delays due to the finite switching speed of amplifiers in
electronic neural networks or to the finite signal propagation time
in biological networks. As a result, delay-independent and delay-
dependent sufficient conditions have been proposed to verify the
asymptotical or exponential stability of delayed neural networks.

In recent years, the dynamic analysis of discrete-time neural
networks (DNNs) have received increasing research interest
than their continuous-time counterpart when implementing the
control laws in a digital way (Gao, Lam,Wang, &Wang, 2004; Tang,
Fang, Xia, & Yu, 2009; Wang, Wei, & Feng, 2009; Wang, Liu, Wei,
& Liu, 2010; Wang, Wang, & Liu, 2010). In reality, the synaptic
transmission is a noisy process brought on by random fluctuation
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from the release of neuron transmitters and other probabilistic
causes in real nervous systems (Gao et al., 2004; Sun, Cao, &
Wang, 2007). So stochastic perturbation should be considered
when investigating DNNs.

It is worth pointing out that when investigating discrete-time
stochastic neural networks (DSNNs) only the deterministic time-
delay case was concerned, and the stability criteria were derived
based only on the information of variation range of the time delay.
Actually, the time delay in some neural networks is often existent
in a stochastic fashion (Blythe, Mao, & Liao, 2001; Hirasawa, Mabu,
& Hu, 2006; Hopfield, 1982; Ray, 1994; Tang et al., 2009; Wang,
Yang,Ho, & Liu, 2006;Wang,Wei et al., 2009;Wang, Liu et al., 2010;
Wang, Wang et al., 2010; Yue, Zhang, Tian, & Peng, 2008; Zhang,
Yue, & Tian, 2009), and its probabilistic characteristic, such as
Poisson distribution or normal distribution, can often be obtained
by statistical methods. It often occurs in real systems that some
values of the delay are very large but the probabilities of the delay
taking such large values are very small. In this case, if only the
variation range of time delay is employed to derive the criteria, the
results may be somewhat more conservative. Hence, DSNNs with
random delays should be considered.

On the other hand, as pointed out in Wang, Ho, and Liu
(2005), the neuron states are not often completely available in
the network output in many applications. Therefore, the state
estimation problem of neural networks becomes significant for
many applications (such as Habtom and Litz (1997), He, Wang,
Wu, and Lin (2006), Liang, Wang, and Liu (2009), Liu, Wang, and
Liu (2007), Liu, Wang, Liang, and Liu (2008a), Liu, Wang, and
Liu (2008b), Mou, Gao, Qiang, and Fei (2008), Salam and Zhang
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(2001), Wang et al. (2005) and Wang, Liu, and Liu (2009)). The
main objective of the problem is to estimate the neuron states
through available output measurements such that the dynamics
of the error-state system is globally stable. Hence, it is desirable
to study the state estimation problem of DSNNs with random
delays. Recently, some papers have been engaged in the issue of
state estimation of networks (Boyd, Ghaoui, Feron, & Balakrishnan,
1994; Elanayar & Shin, 1994; Habtom & Litz, 1997). Wang et al.,
laid fundamental works for state estimation problem of neural
networks (Liang et al., 2009; Liu et al., 2007, 2008a, 2008b; Wang
et al., 2005; Wang, Liu et al., 2009). Wang et al. firstly investigated
the state estimation problem for neural networks with time-
varying delays in Wang et al. (2005). In He et al. (2006), the
problem of state estimation was addressed for delayed neural
networks under a weak assumption that the time-varying delay
was required to be differentiable. However, the proposed condition
was expressed in terms of a matrix inequality, not an LMI, which
corresponds to a nonlinear programming problem. The authors
in Liu et al. (2007) and Wang, Liu et al. (2009), dealt with the
state estimation problem for a class of neural networks with
discrete and distributed delays. In Liang et al. (2009) and Liu et al.
(2008a, 2008b), the sufficient conditions are formulated in terms
of LMIs. However, the stochastic disturbance and random delay
are not taken into account when dealing with the state estimation
problem.

Motivated by the above discussion, the state estimation
problem for a class of discrete-time stochastic neural networks
(DSNNs) with random delays will be considered in this paper.
By referring to the model of DSNNs in Yue et al. (2008) and
the idea in Liang et al. (2009) and Wang, Liu, and Liu (2008), an
estimator is designed to approximate the neuron states through
available output measurement. The effect of both variation range
and distribution probability of the time delay are taken into
account in the proposed approach which is mainly different
from the traditional methods and will lead to less conservative
results and our results take some well studied models as special
cases. We translate the distribution probability of the time
delay into parameter matrices of the transferred systems. In
the established model, the stochastic disturbances are described
in terms of a Brownian motion and the time-varying delay is
characterized by introducing a Bernoulli stochastic variable. By
employing a Lyapunov–Krasovskii functional mild assumption,
and a stochastic analysis technique, sufficient delay-distribution-
dependent conditions are established in terms of linear matrix
inequalities (LMIs) that guarantee the existence of the state
estimator which can be checked readily by the Matlab toolbox.

The remainder of this paper is organized as follows. In Section 2
themodel formulation and some preliminaries are given. Themain
results are stated in Section 3. One illustrate example is given to
demonstrate the effectiveness of the proposed results in Section 4.
Finally, the conclusions are presented in Section 5.

2. Notations and preliminaries

In this section, some elementary notations and lemmas are
introduced which play an important role in the proof of the main
result in Section 3.
Notation: Throughout this paper,Rn andRn×m, respectively, denote
the n-dimensional Euclidean and the set of all n × m matrices. I is
the identity matrix of appropriate dimensions. The superscript ‘‘T ’’
denotes matrix transposition. The notation X > 0 (respectively,
X ≥ 0), where X is a real symmetric matrix, means X is positive
definite (respectively, positive semi-definite). | · | is the Euclidean
norm in Rn. If A is a matrix, ‖A‖ denotes its operator norm.
i.e. ‖A‖ = sup{|Ax| : |x| = 1} =


λmax(ATA) where λmax(A)

(respectively λmin(A)) means the largest (respectively, smallest)
eigenvalue of A. Z≥0 denotes the set including zero and positive
integers. The asterisk ∗ in a matrix is used to denote term that
is induced by symmetry. E{·} denotes the expectation. Moreover,
let (Ω, F , {Ft}t≥0, P ) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions. Denote by
L2

F0
([−τ , 0], Rn) the family of all F0-measurable C([−τ , 0] : Rn)-

valued random variables φ = {φ(s), −τ ≤ s ≤ 0} with the norm
‖φ‖ = sup−τ≤s≤0 |φ(s)|2 < ∞.

Consider the following n-neuron DSNNs with time delay:

x(k + 1) = Ax(k) + BF̃(x(k)) + DG̃(x(k − τ(k)))

+ σ̃ (k, x(k))ω(k) + J, (1)

where x(k) = (x1(k), x2(k), . . . , xn(k))T ∈ Rn is the state vector
associated with the n neurons, A = diag(a1, a2, . . . , an) with
|ai| < 1; B = (bij)n×n, D = (dij)n×n denote the connection
weights matrix and the delayed connection weights matrix,
respectively; F̃(x(k)) = [f̃1(x1(k)), f̃2(x2(k)), . . . , f̃n(xn(k))]T and
G̃(x(k)) = [g̃1(x1(k)), g̃2(x2(k)), . . . , g̃n(xn(k))]T denote the
neuron activation functions; τ(k) denotes the time-varying delay,
J = (J1, J2, . . . , Jn)T is an external input vector. σ̃ : R × Rn

→

Rn is a continuous function, ω(k) is a scalar Wiener process on a
probability space (Ω, F , P ) with

E{ω(k)} = 0, E{ω2(k)} = 1, E{ω(i)ω(j)} = 0 (i ≠ j).

Throughout this paper, the neuron activation functions and
time-delay are assumed to satisfy the following assumptions:

Assumption 1 (Liu, Wang, & Liu, 2006; Wang, Shu, Liu, Ho, & Liu,
2006). For i ∈ {1, 2, . . . , n}, the neuron activation functions fi(·)
and gi(·) are continuous and bounded, and satisfy the following
conditions

li ≤
f̃i(s1) − f̃i(s2)

s1 − s2
≤ Li

ωi ≤
g̃i(s1) − g̃i(s2)

s1 − s2
≤ Wi,

∀s1, s2 ∈ R(s1 ≠ s2) i = 1, 2, . . . , n

f̃i(0) = g̃i(0) = 0, i = 1, 2, . . . , n.

(2)

Remark 1. This assumption was first proposed in Liu et al. (2006)
and Wang, Shu et al. (2006), and has been subsequently studied
in many recent neural networks papers. The constants li, Li, ωi,Wi
in Assumption 1 are allowed to be positive, negative, or zero, so
the conditions in Assumption 1 are more general than the usual
sigmoid functions and Lipschitz conditions. Such a description is
very precise in quantifying the lower and upper bounds of the
activation functions, therefore it is very effective for employing LMI
method to reduce the possible conservatism.

Assumption 2. σ̃ (k, x(k)) is the continuous function satisfying
σ̃ (0, 0) = 0,

[σ̃ (k, x(k)) − σ̃ (k, y(k))]T [σ̃ (k, x(k)) − σ̃ (k, y(k))]
≤ ρ(x(k) − y(k))T (x(k) − y(k))

where ρ > 0 is a known constant scalar.

Assumption 3. The time delay τ(k) is bounded, 0 ≤ τm < τ(k) ≤

τM , and its probability distribution can be observed, i.e., suppose
τ(k) takes values in [τm : τ0] or (τ0 : τM ] and Prob{τ(k) ∈ [τm :

τ0]} = δ0, where τm ≤ τ0 < τM , and 0 ≤ δ0 ≤ 1.



Download English Version:

https://daneshyari.com/en/article/405565

Download Persian Version:

https://daneshyari.com/article/405565

Daneshyari.com

https://daneshyari.com/en/article/405565
https://daneshyari.com/article/405565
https://daneshyari.com

