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a b s t r a c t

This paper considers a class of online gradient learningmethods for backpropagation (BP) neural networks
with a single hidden layer. We assume that in each training cycle, each sample in the training set is
supplied in a stochastic order to the network exactly once. It is interesting that these stochastic learning
methods can be shown to be deterministically convergent. This paper presents some weak and strong
convergence results for the learning methods, indicating that the gradient of the error function goes to
zero and theweight sequence goes to a fixed point, respectively. The conditions on the activation function
and the learning rate to guarantee the convergence are relaxed compared with the existing results. Our
convergence results are valid for not only S–S type neural networks (both the output and hidden neurons
are Sigmoid functions), but also for P–P, P–S and S–P type neural networks, where S and P represent
Sigmoid and polynomial functions, respectively.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial neural network has been a hot topic in recent years
in cognitive science, computational intelligence and intelligent
information processing. Backpropagation (BP) is the most broadly
used learning method for feedforward neural networks. It was
first proposed by Werbos (1974) in his Ph.D. thesis, and
has been rediscovered several times (LeCun, 1985; Parker,
1982; Rumelhart, Hinton, & Williams, 1986). There are two
practicalways to implement the backpropagation algorithm: batch
updating approach and online updating approach. Corresponding
to the standard gradient method, the batch updating approach
accumulates the weight correction over all the training samples
before actually performing the update. On the other hand,
the online updating approach updates the network weights
immediately after each training sample is fed. Some authors
compare the twodifferent training schemes for feedforward neural
networks (Heskes & Wiegerinck, 1996; Nakama, 2009; Wilson
& Martinez, 2003). Heskes and Wiegerinck (1996) reveal several
asymptotic properties of the two schemes. Wilson and Martinez
(2003) explain why batch training is almost always slower than
online training (often orders of magnitude slower) especially
on large training sets. Nakama (2009) theoretically analyzes the
convergence properties of the two schemes applied to quadratic
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loss functions and shows the exact degrees to which the training
set size, the variance of the per-instance gradient, and the learning
rate affect the rate of convergence for each scheme.

There are three approaches for online training of BP neural
networks according to different fashions of sampling. The first
approach is OGM-CS (completely stochastic order): At each
learning step, one of the samples is drawn at random from the
training set and presented to the network (Finnoff, 1994; Heskes
& Wiegerinck, 1996; Terence, 1989; Wilson & Martinez, 2003).
The second approach is OGM-SS (special stochastic order): In each
training cycle, each sample in the training set is supplied in a
stochastic order to the network exactly once (Heskes&Wiegerinck,
1996; Li & Ding, 2005; Li, Wu, & Tian, 2004; Nakama, 2009). The
third approach is OGM-F (fixed order): In each training cycle, each
sample in the training set is supplied in a fixed order to the network
exactly once (Heskes &Wiegerinck, 1996; Mangasarian & Solodov,
1994; Wu & Xu, 2002; Wu, Feng, Li, & Xu, 2005; Xu, Zhang, & Jin,
2009).

Naturally, the existing convergence results for OGM-CS are
mostly asymptotic convergence with a probabilistic nature as the
size of training samples goes to infinity (Bertsekas & Tsitsiklis,
1996; Chakraborty & Pal, 2003; Fine & Mukherjee, 1999; Finnoff,
1994; Liang, Feng, Lee, Lim, & Lee, 2002; Tadic & Stankovic,
2000; Terence, 1989; Zhang, Wu, Liu, & Yao, 2009). Deterministic
convergence can be obtained for OGM-SS and OGM-F (Li et al.,
2004; Mangasarian & Solodov, 1994; Shao, Wu, & Liu, 2007; Wu
& Xu, 2002; Wu et al., 2005; Wu, Feng, & Li, 2002; Wu & Shao,
2003; Wu, Shao, & Qu, 2005; Xu et al., 2009). It is interesting
to see that the learning method OGM-SS with stochastic nature
enjoys deterministic convergence. The convergence result is a
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bit easier to prove for OGM-F than for OGM-SS. But we have
reason to believe, and our experience shows, that OGM-SS behaves
numerically better than OGM-F since the stochastic nature of the
learning procedure survives in OGM-SS (Li & Ding, 2005; Li et al.,
2004).

To guarantee the convergence, it is commonly required that
the learning rate ηm satisfies the assumptions

∑
∞

m=1 ηm = ∞

and
∑

∞

m=1 η
2
m < ∞ as in Bertsekas and Tsitsiklis (1996) and

Tadic and Stankovic (2000) for OGM-CS. An extra assumption
limm→∞ ηm/ηm+1 = 1was introduced byXu et al. (2009) for OGM-
F. A special conditionwhich is basically ηm = O(1/m)was required
in Li et al. (2004), Shao et al. (2007), Wu and Xu (2002), Wu et al.
(2005), Wu et al. (2002), Wu and Shao (2003) andWu et al. (2005)
for OGM-F and OGM-SS.

To obtain the strong convergence result, which means that
the weight sequence converges to a fixed point, Wu et al. (2005)
introduced an additional assumption: the number of the stationary
points of the error function is finite. A more relaxed condition is
used in Xu et al. (2009): the gradient of the error function has at
most countably infinite number of stationary points.

The aimof this paper is to present a comprehensive study on the
weak and strong convergence for OGM-F and OGM-SS, indicating
that the gradient of the error function goes to zero and the weight
sequence goes to a fixed point, respectively. These convergence
results improve the existing results in Li et al. (2004), Shao et al.
(2007), Wu and Xu (2002), Wu et al. (2005), Wu et al. (2002), Wu
and Shao (2003), Wu et al. (2005) and Xu et al. (2009) such that
the conditions on the activation function and the learning rate
to guarantee the convergence are much relaxed. Specifically, we
make the following contributions:

• The extra condition limm→∞ ηm/ηm+1 = 1 for the learning rate
is removed which is a requisite in Xu et al. (2009).

• The convergence results are valid for both OGM-F and OGM-SS.
• The convergence results apply not only to S–S type neural

networks (both the output and hidden neurons are Sigmoid
functions), but also to P–P, P–S and S–P type neural networks,
where S and P represent Sigmoid and polynomial functions,
respectively.

• The restrictive assumptions for the strong convergence in Wu
et al. (2005) and Xu et al. (2009) are relaxed such that the
stationary points set of the error function is only required not
to contain any interior point.

• We assume that the derivative g ′ of the activation function
is Lipschitz continuous on any bounded closed interval. This
improves the corresponding conditions in Wu et al. (2005),
which require the boundedness of the second derivative g ′′, and
in Xu et al. (2009), which require g ′ to be Lipschitz continuous
and uniformly bounded on the whole R.

Let usmake a few remarks on the above contribution points. For
the first contribution point, as an example, we recall a well-known
adaptive technique for the learning rate ηm: ηm = (1 + a)ηm−1 if
the error is decreasing, and ηm = (1 − a)ηm−1 otherwise, where
a < 1 is a positive number. Xu’s condition limm→∞ ηm/ηm+1 =

1 (Xu et al., 2009) is not valid in this case, while our convergence
results remains valid. For the second contribution point, it is
interesting to see that the learningmethodOGM-SSwith stochastic
nature enjoys deterministic convergence. We observe that OGM-F
is actually a deterministic iteration procedure in that the iteration
sequence is determined uniquely by the initial value and the fixed
order of the samples. The convergence result is a bit easier to
prove for OGM-F than for OGM-SS. We have reason to believe,
and our experience shows, that OGM-SS behaves numerically
better than OGM-F since the stochastic nature of the learning
procedure survives in OGM-SS (Li & Ding, 2005; Li et al., 2004).
Our convergence results are generalizations of both the results of

Xu et al. (2009), which considers OGM-F, and the results of Li et al.
(2004), which considers OGM-SS with an unpleasant condition
ηm = O(1/m) on the learning rate. Our third contribution allows
the activation functions for both hidden and output layers to be
more flexible. Here we remark that typically, S–S type networks
are used for classification problems, and S–P type networks with
Sigmoid hidden neurons and linear output neurons are used for
approximation problems. The existing convergence results (Li
et al., 2004; Shao et al., 2007; Wu & Xu, 2002; Wu et al., 2005,
2002; Wu & Shao, 2003; Wu et al., 2005; Xu et al., 2009) are
mostly for either S–S type or S–P type alone but not for both of
them. In this paper, we give a uniform treatment for all types of
networks. The fourth and fifth contribution points are mainly of
theoretical interest. From a theoretical point of view, we mention
that different analytical tools are employed inWu et al. (2005) and
Xu et al. (2009) and this study for the convergence analysis, might
explain, at least in part, why different conditions are obtained
for the convergence. The differential Taylor expansion is used in
Wu et al. (2005), which requires the boundedness of the second
derivative g ′′ of the activation function g; the mean value theorem
of integrals is employed in Xu et al. (2009), which requires g ′ to be
Lipschitz continuous and uniformly bounded; and in this paper, we
use the integral Taylor expansion and hence require the Lipschitz
continuity of g ′ on any bounded closed interval. Finally, we point
out that Xu et al. (2009) is a big step forward for the convergence
study of OGM-F and that Xu et al. (2009) also includes another
convergence result under the condition that the error function is
directionally convex. This convex condition is not considered in
this paper.

The rest of this paper is organized as follows. In Section 2, online
updating methods including OGM-F and OGM-SS are introduced.
The main convergence results are presented in Section 3 and their
proofs are gathered in Section 4. Some conclusions are drawn in
Section 5.

2. OGM-F and OGM-SS

Let us begin with an introduction of a feedforward neural
network with three layers. The numbers of neurons for the input,
hidden and output layers are p, n and 1, respectively. Suppose that
the training sample set is


xj,Oj

J
j=1 ⊂ Rp

× R, where xj and Oj

are the input and the corresponding ideal output of the jth sample,
respectively. Let V =


vi,j

n×p be the weight matrix connecting

the input and the hidden layers, and write vi = (vi1, vi2, . . . , vip)
T

for i = 1, 2, . . . , n. The weight vector connecting the hidden and
the output layers is denoted by u = (u1, u2, . . . , un)

T
∈ Rn. To

simplify the presentation, we combine the weight matrix V with
the weight vector u, and write w =


uT , vT1, . . . , v

T
n

T
∈ Rn(p+1).

Let g, f : R → R be given activation functions for the hidden
and output layers, respectively. For convenience, we introduce the
following vector valued function

G (z) = (g (z1) , g (z2) , . . . , g (zn))T , ∀ z ∈ Rn. (1)

For any given input x ∈ Rp, the output of the hidden neurons is
G(Vx), and the final actual output is

y = f (u · G (Vx)) . (2)

For any fixedweightsw, the error of the neural networks is defined
as

E(w) =
1
2

J−
j=1

(Oj
− f (u · G(Vxj)))2 =

J−
j=1

fj(u · G(Vxj)), (3)

where fj(t) =
1
2 (O

j
− f (t))2, j = 1, 2, . . . , J, t ∈ R. The gradients

of the error function with respect to u and vi are, respectively,
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