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a b s t r a c t

Support vector machines are state-of-the-art pattern recognition algorithms that are well founded in
optimization and generalization theory but not obviously applicable to the brain. This paper presents Bio-
SVM, a biologically feasible support vector machine. An unstable associative memory oscillates between
support vectors and interacts with a feed-forward classification pathway. Kernel neurons blend support
vectors and sensory input. Downstream temporal integration generates the classification. Instant learning
of surprising events and off-line tuning of support vector weights trains the system. Emotion-based
learning, forgetting trivia, sleep and brain oscillations are phenomena that agreewith the Bio-SVMmodel.
A mapping to the olfactory system is suggested.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Human and animal brains excel in complex classifications.
Friend or foe? Edible or poisonous? Survival depends on such
quick appraisals. How does the brain implement trainable general-
purpose classifiers that learn instantly, yet avoid overwriting
relevant lessons and match outputs to appropriate behaviours?
Instant learning is vital in an unforgiving environment. Over-

writing or diluting old but still valid experiences is dangerous. Yet
there is not enough memory or search resources for remembering
everything. Memory must be managed so that vital knowledge is
conserved while trivial experiences are discarded. Connecting the
output of plastic neural classifiers to predetermined behavioural
triggers is crucial. Predator scent detection must for example be
coupled to flight behaviour. Haberly (2001) found, however, that
biologically plausible algorithms for trainable pattern recognition
generating predetermined output codes are in short supply.
This paper introduces Bio-SVM, a biologically feasible support

vector machine that instantly learns surprising examples, forgets
trivial examples and trains an optimal generalizing classifier with
predetermined output codes. Bio-SVM is consistent with the
observed mix of fast and slow brain oscillations and maps well to
the architecture of the olfactory system.
The generic pattern recognition task is to classify a test

sample by generalizing from known classifications of training

∗ Corresponding address: Vårvägen 10, SE-19460 Upplands Väsby, Sweden. Tel.:
+46 709277264; fax: +46 855503700.
E-mail addresses:magnus@jaendel.se, magjan@foi.se.

examples. We shall only consider binary classifications. Multi-
value classifications can readily be produced by a bank of binary
classifiers. The training set S consists of examples (x, y), where x is
a real-valued input vector and y ∈ {+1,−1} indicates the correct
classification. Bold letters signify vector quantities. The training
examples are presented in a batch ormore realistically one-by-one
in online learning.
Support vector machines (SVMs) (see Cristianini & Shawe-

Taylor, 2000; Schölkopf & Smola, 2002 for reviews) have recently
emerged as a strong alternative for any classification application.
An SVMworks by projecting input vectors x to a high-dimensional
feature space. Features φ(x) are typically non-linear functions of
the input vector. The training algorithm finds a hyperplane in fea-
ture space separating positive cases from negative caseswithmax-
imum margin. The set of feature-space hyperplanes provides the
broad hypothesis domain that is vital for solving substantial clas-
sification tasks. Enforcing maximal margins ensures a generaliza-
tion performance that is optimal in a certain well-defined sense.
The key insight of SVM pioneers Boser, Guyon, and Vapnik (1992)
is that the SVM optimization problem can be solved without ex-
plicitly constructing the feature space.
The solution to a classification problem is the set of support vec-

tors SV. Each support vector xi is drawn from the training examples
and has an associated positive real-valued weight αi. The support
vectors are borderlinemembers of the training data used for defin-
ing the partitioning feature-space hyperplane. Positive support
vectors are close to the negative domain. Negative support vectors
are similarly bordering to the positive realm. An SVM classifies test
samples x using a real-valued classification function f (x). The test
sample belongs to the negative class y = −1 if f (x) < 0 and to the
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positive class y = 1 otherwise. The classification function is

f (x) =
∑
i∈SV
yiαiK(xi, x)+ b, (1)

where b is a bias parameter. The positive definite kernel function K
defines the implicit projection to feature space. For a given pair of
input vectors xi and xj, K(xi, xj) is a measure of alignment in fea-
ture space.

2. The Bio-SVMmodel

SVMs are correctly viewed as founded on rigorousmathematics
rather than biological analogies. Solution algorithms suggest
implementation in a digital computer. There is, however, one
aspect of SVMs that stands out as similar to biological systems.
An SVM ignores typical examples but pays attention to borderline
cases and outliers. It remembers surprises and forgets run-of-the-
mill events. Life learns also from odd emotionally charged events.
We remember the support vectors. Given their mathematical
soundness, efficiency and a certain high-level similarity to
biological learning, could SVMs be implemented in the brain?
This section casts the abstract SVM concept into a form that can

be implemented by biological neural systems—the Bio-SVMmodel.
This hypothesis is then compared to the gross features of brain
pattern recognition systems.

2.1. Zero-bias ν-SVM

Wemust first find a formal SVMmodel that is malleable to neu-
ral form. The base-line is ν-SVM (Schölkopf, Smola, Williamson, &
Bartlett, 2000), a soft-margin SVM in which a dimensionless pa-
rameter 0 < ν < 1 controls the trade-off between generalization
and accuracy. Soft margin means that outlier support vectors may
violatemargins. Suchmavericks are expected in noisy training sets.
Schölkopf et al. (2000) show that ν is an upper bound on the frac-
tion of margin errors. The ν-SVM model is solved, for a set of m
training examples, by maximizing the dual objective function,

W (α) = −
1
2

m∑
i,j=1

yiyjαiαjK(xi, xj), (2)

subject to

0 ≤ αi ≤
1
m

(3)

and
m∑
i=1

αi ≥ ν. (4)

The classification function is defined by Eq. (1). The solution to
this problem is the optimal feature-space hyperplane.
We use a modified version of ν-SVM in which the bias

parameter in Eq. (1) is set to zero. This is achieved by embedding
the feature space vector φ(x) of the original problem in a
larger space {φ(x), τ }, thus increasing the dimensionality by one
(Cristianini & Shawe-Taylor, 2000). This operation corresponds to
replacing the old kernel K with a new kernel K + τ 2. Removing
the bias means less freedom for optimization and thus potentially
smaller feature space margin, leading to reduced generalization
performance (see Cristianini & Shawe-Taylor, 2000, p. 131). As
explained in Section 2.5, it is, however, an essential simplification
for mapping the model to a biological substrate.
The solution of the ν-SVM problem in Eqs. (2)–(4) is the

weight vector α. We need a solution algorithm that is suitable
for physiological modelling even if it may be suboptimal as a
serial computer algorithm. We note that in general there exists an
optimal solution in the α-space hyperplane,

m∑
i=1

αi = ν, (5)

(Chang & Lin, 2001). The strategy is to start at an arbitrary point in
the allowed domain of the α-hyperplane, e.g. by initializing all αi
to ν/m, and then follow the projection of the gradient ofW (α) in
the α-hyperplane until an optimum is found.
The gradient projection is

gradP(W ) = grad(W )− e⊥(grad(W ) · e⊥), (6)

where e⊥is the unit normal vector of the α-hyperplane and
grad(W ) = ( ∂W

∂α1
, ∂W
∂α2
, . . . , ∂W

∂αm
). The ith gradient component is

∂W
∂αi
= −yi

m∑
j=1

yjαjK(xj, xi) = −yif (xi) = −margi, (7)

where margi is the margin in feature space between the example
and the classification hyperplane. A positivemarginmeans that the
example is classified correctly. The ith component of the gradient
projection is, therefore,

gradP(W )i = 〈marg〉 −margi, (8)

where 〈marg〉 = 1
m

∑m
j=1 yjf (xj) is the average margin. Each

weight shall hence be updated in proportion to the difference
between the average margin and the margin of the associated
example. This rule strives to make the margin of each example
equal to the average margin as the hypothesis α progresses
towards the optimum. It is not always possible to reach equality.
The converged ν-SVM partitions the training examples into three
distinct sets.
Trivial examples are non-support vectors. Their weights are

driven to zero since the margin of such examples is larger than the
average margin. Note that trivial examples can be removed from
the training set once a solution has been found.
Outliers are possibly misclassified support vectors that consis-

tently fall beyond of the average margin. Their weights are pushed
to the maximum value 1/m.
Regular support vectors converge to the average margin. Their

weights fall within 0 < αi < 1/m.
Eq. (2) is quadratic with respect to α and the maximum is

sought in the α-space hyperplane defined by Eqs. (3) and (5).
This guarantees that there are no false maxima (see Chang & Lin,
2001 for a proof). It is hence easy to evaluate convergence. With
plenty of time and computational resources one can simply move
in very small steps along gradP(W ) until the maximum is found.
The challenge is to find a biological apparatus that does just this.

2.2. The Bio-SVM concept

The general architecture and key operational processes for
mapping zero-bias ν-SVM to brain systems are first outlined here
and then detailed in the following sections. The main modules of
the Bio-SVM are the Oscillating Memory (OM) for learning and
storing support vectors and the Classification Pathway (CP) for
performing classifications. The OM is the only plastic part of the
system. The overall architecture is shown in Fig. 1.
The Bio-SVM executes three processes:

(1) Classification, where sensory inputs are classified.
(2) Surprise learning, where new training examples are engraved.
A supervising unit, called the Critic, detects failed classifica-
tions and triggers the OM to remember the anomalous event.

(3) Importance learning, where trivial examples are forgotten
and support vectors get optimal weights. The OM inputs
training examples to the CP while the brain sleeps and
adjusts weights according to resulting feedback. Examples are
forgotten if weights consistently fall to zero.

Higher brain systems control which process to employ.
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