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a b s t r a c t

In our previous study [Koike, Y., Hirose, H., Sakurai, Y., Iijima T., (2006). Prediction of arm trajectory from
a small number of neuron activities in the primary motor cortex. Neuroscience Research, 55, 146–153],
we succeeded in reconstructing muscle activities from the offline combination of single neuron activities
recorded in a serial manner in the primary motor cortex of a monkey and in reconstructing the joint
angles from the reconstructed muscle activities during a movement condition using an artificial neural
network. However, the joint angles during a static condition were not reconstructed. The difficulties of
reconstruction under both static andmovement conditions mainly arise due to muscle properties such as
the velocity–tension relationship and the length–tension relationship. In this study, in order to overcome
the limitations due to thesemuscle properties, we divided an artificial neural network into two networks:
one formovement control and the other for posture control. We also trained the gating network to switch
between the two neural networks. As a result, the gating network switched the modules properly, and
the accuracy of the estimated angles improved compared to the case of using only one artificial neural
network.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Interest in the field of brain–machine interfaces has been in-
creasing in recent years, and many papers on it have been pub-
lished (Nicolelis, 2001; Serruya, Hatsopoulos, Paninski, Fellows,
& Donoghue, 2002; Talylor, Tillery, & Schwartz, 2002; Wessberg,
Stambaugh, Kralik, Beck, & Laubach, 2000). A brain–machine in-
terface is a technology adopted for use by paralyzed people who
cannot move their arms due to damage from an accident or a dis-
ease. The main goal is to allow paralyzed people to interact with
societymore freely by giving them control over an external device,
such as a robot arm or a mouse cursor, from brain signals through
a mathematical model.
Considerable research and development has been done in

the field of invasive brain–machine interfaces since 1999, when
Chapin, Moxon, Markowitz, and Miguel A L (1999) controlled the
arm movement of a robot having one degree of freedom from
the neural activity of the rat motor cortex. Carmena et al. (2003)
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succeeded in reconstructing the arm movement of a robot having
three degrees of freedom, including grip force, from the neural
activity of the premotor cortex, the primary motor cortex, and the
posterior parietal cortical area of a monkey. In addition, Hochberg
et al. (2006) succeeded in controlling a computer cursor on a two-
dimensional display from the signal of the primarymotor cortex of
a human’s brain.
In order to implement a brain–machine interface system similar

to a human arm, it is essential to reconstruct the position and force
information of the arm from the neural activity of the brain. For
example, let us consider the case of a human picking up an object;
the human first moves his arm to the position of the object from
the original position of the arm and then grips the object with a
proper force depending on the weight of the object. Therefore, the
reconstruction of the force information is an important factor in
the implementation of a brain–machine interface system.We used
electromyography (EMG) signals to simultaneously reconstruct
the position and force information. Since EMG signals reflect
muscle tensions, we can precisely reconstruct the arm posture,
joint torque, and stiffness from the EMG signals (Koike & Kawato,
1994, 1993, 1995).
Several hypotheses have been proposed to describe the

relationship between the neural activities of the primary motor
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Fig. 1. Behavioral task. Themonkey, trained to perform a continuous arm-reaching
task, sat in a primate chair with its head fixed and facing a touch panel displaying
five lights and five buttons.

cortex and motor control. Among these hypotheses, one states
that the neural activities of the primary motor cortex encode the
movement direction (Georgopoulos, Kalaska, Caminiti, & Massey,
1982), while another states that the neural activities encode the
force (Fetz, Cheney, & German, 1976), and yet another states that
the neural activities encode both the movement direction and the
force (Kalaska, Cohen, Hyde, & Prud’homme, 1989). Despite these
endeavors, the exact relationship between the neuron activities
in the primary motor cortex (M1) and motor control remains
unknown.
Previous studies to determine the relationship between the

neural activities of the primary motor cortex and motor control
analyzed the correlation between the neural activities of M1 and
the magnitude and direction of movement or force. However,
the actuator that generates the movement and force is a muscle.

We have proposed computational models (Koike & Kawato, 1994,
1993; Kyuwan, Hideaki, Toshio, & Yasuharu, 2005; Yagishita,
Domen, Sato, & Koike, 2003) to estimate the joint torque, joint
angle, impedance, and so on from the activity of muscles. By
using these models, we can estimate the movement direction and
the force from the activity of muscles. Some studies have used
these results to devise a model to determine the relationship
between the neural activities of the primary motor cortex
and movement; this relationship cannot be determined by the
conventional method of calculating the correlation between the
neural activities and movement. For example, Todorov (Emanuel,
2000) has proposed a model that generates movement. In this
model, since the activity of muscles is made by inserting a time-
delay term into the neural activities of the primary motor cortex,
muscle activity simply becomes a linearization of neural activities.
The force generated in the muscles was estimated by using a first-
order model from two parameters: the length of the muscles and
the contraction velocity.
We considered the model of the muscle as a second-order

low-pass filter and thus designed it to have the characteristics
of smoothness and time delay. The low-pass filter was designed
from the relationship between human muscles and force (Koike
& Kawato, 1995). We implemented the nonlinear characteristics
of muscles related to the joint angle and contraction velocity of
muscles by using two different artificial neural network models.
In this way, by incorporating the smoothness and nonlinearity of a
musculoskeletal system in themodel, we can precisely reconstruct
the actualmovement, evenwhen using a linearmodel between the
neural activities of the primarymotor cortex andmuscle activities.
In this study, we first reconstructed nine muscle tensions

(filtered EMGsignals) from theneural activity of 105neurons inM1
by using a linear regression method. We then estimated the joint
angles in four degrees of freedom related to the shoulder and the
elbow from the reconstructed muscle tensions by using a modular
artificial neural network model.

Fig. 2. Sequential arm-reaching task (Hold–C–A–B sequence).
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