
Neural Networks 22 (2009) 1271–1277

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2009 Special Issue

Selecting features for BCI control based on a covert spatial attention paradigm
Marcel van Gerven a,∗, Ali Bahramisharif a, Tom Heskes a, Ole Jensen b
a Institute for Computing and Information Sciences, Intelligent Systems Group, The Netherlands
b Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands

a r t i c l e i n f o

Article history:
Received 29 September 2008
Received in revised form 27 April 2009
Accepted 15 June 2009

Keywords:
Brain–computer interface
Covert spatial attention
Sparse logistic regression

a b s t r a c t

Covert attention to spatial locations in the visual field is a relatively new control signal for brain–computer
interfaces. Previous EEG research has shown that trials can be classified by thresholding based on left and
right hemisphere alpha power in covert spatial attention paradigms. We reexamine the covert attention
paradigm based on MEG measurements for fifteen subjects. It is shown that classification performance
can be improved by applying sparse logistic regression in order to select a subset of the sensors specific
to each subject as the basis for classification. Furthermore, insight is gained into how classification
performance changes as a function of the length of the attention period and as a function of the number
of trials. Classification performance steadily increases as the length of the attention period over which is
averaged is increased, although this does not necessarily translate into higher bit rates. Good classification
performance using early components of the attention period may be related to evoked response. With
regard to the number of used trials, classification performance became maximal after 150 samples had
been obtained, requiring a training time of approximately elevenminutes under the current experimental
paradigm.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Brain–computer interfaces (BCIs) depend on the detection of
changes in task-related activity as the subject moves from one
mental state to the other. This implies that task-related changes
must be strong enough and stable over time in order to be useable
as a control signal for BCI. It is well-known that a steady-state
visual evoked potential (SSVEP), induced by an external stimulus
oscillating at a particular frequency, can drive a BCI (Allison,
McFarland, Schalk, Zheng, Jackson, & Wolpaw, 2008; Middendorf,
McMillan, Calhoun, & Jones, 2000; Sutter, 1992). Recently, Kelly,
Lalor, Reilly, and Foxe (2005) have shown that the external
stimulus might not be required and covert attention to spatial
locations in the visual field alone may be sufficient to drive a BCI.
They were the first to demonstrate that shifts in covert spatial
attention between the left and right visual hemifield can be picked
up on the single trial level. This accomplishment is based on the
fact that covert shifts in visual attention are paired by alpha-
desynchronisation in posterior sites contralateral to the attended
position (Sauseng et al., 2005; Thut, Nietzel, Brandt, & Pascual-
Leone, 2006; Yamagishi, Goda, Callan, Anderson, & Kawato, 2005)
as well as alpha-synchronisation ipsilateral to the attended
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position (Kelly, Lalor, Reilly, & Foxe, 2006; Worden, Foxe, Wang,
& Simpson, 2000).
Kelly et al. (2005) demonstrated that by using alpha power

(8–14Hz) over left and right hemispheres based on 3.52 swindows
of EEG data as input to a linear discriminant analysis classifier,
a maximum bit rate of 7.5 bits per minute could be achieved.
Covert spatial attention is a promising paradigm for BCI control
since it is natural for the subject to orient ones attention to the
direction of intended control. Furthermore, little training time is
required in order to attain acceptable results. However, at present
the paradigm remains relatively unexplored.
In this study, we examine the paradigm using data obtained

with a 275 channel MEG system for fifteen subjects. To our knowl-
edge, this is the first time covert spatial attention is examined as a
paradigm for brain–computer interfacing usingMEG as amodality.
Our goal is to improve classification performance by using a feature
selection approach. We assume that alpha (de)synchronisation
over an attention period is indeed the signal of interest, but in con-
trast to Kelly et al. (2005), the optimal channels are assumed to
be subject specific and will be identified using sparse logistic re-
gression (van Gerven, Hesse, Jensen, & Heskes, 2009). Examples
of other feature selection approaches in BCI research are Millán,
Franzé, Mouriño, Cincotti, and Babiloni (2002), Schröder, Bogdan,
Rosenstiel, Hinterberger, and Birbaumer (2003), Lal et al. (2004),
Schröder et al. (2005) and Hoffman, Yazdani, Vesin, and Ebrahimi
(2008). We compare the results of sparse logistic regression with a
method that is analogous to that of Kelley et al. We also examine
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Fig. 1. Timeline of a trial in the covert attention experiment. Subjects had to attend
to one of the target squares and keep track of whether or not the target square
turned green at the end of the attention period.

how classification performance changes as a function of the length
of the attention period and as a function of the number of trials.
The hope is that the improved classification performance due to
the selection of more optimal features and a better insight into
the optimal attention period and number of trials leads to a more
widespread use of this promising BCI paradigm.

2. Data collection

Fifteen healthy subjects (mean age 28± 9; six females) partic-
ipated in the experiment. All subjects had (corrected to) normal
vision. Four males and two females were left-handed and the re-
maining subjects were right-handed. The study was approved by
the local ethics committee and written informed consent was ob-
tained from the subjects. The subjects viewed a screen with a cen-
tral fixation cross and four squares at 7.5 degrees of visual angle to
the top, right, bottom, and left of the fixation cross. For the present
analysis, we focused on a subset of the data. A total of 256 tri-
als were collected in eight sessions for subjects covertly attending
(i.e., without moving their eyes from the fixation cross) during an
attention period of 2.5 s to the left or right square, as indicated by
an arrow that pointed to the intended direction for 400 ms. There
was a rest period of 1500 ms between each trial. In order to keep
subjects engaged, theywere required to count the number of times
the target square turned green as opposed to red for 40 ms at the
end of the attention period (Fig. 1).
Electromagnetic brain activity was recorded using a CTF

MEG System (VSM MedTech Ltd., Coquitlam, British Columbia,
Canada),whichprovideswhole-head coverageusing 275DCSQUID
axial gradiometers although for the current experiments only
86 posterior (occipito-parietal) channels were used. Additionally,
vertical and horizontal eye-movements were recorded using two
bipolar EEG channels. The data was analysed using FieldTrip.1 The
planar gradientwas approximated for each sensor using the signals
calculated from a sensor and its neighbouring sensors (Bastiaansen
& Knosche, 2000). Data was detrended and downsampled from
1200 Hz to 300 Hz. No further artifact rejection was performed
since our methods should be useable in (noisy) online BCI settings.
For each trial, the power spectrum was computed in the 8 Hz to
14 Hz range using a Hanning window for the period from −0.5 to
2.5 s with 100 ms intervals. We applied an adaptive time window
of five cycles for each frequency (1T = 5/f ) and an adaptive
smoothing of 1f = 1/1T . We used normalised (z-transformed)
log power per channel averaged over time and frequency as input
to the classifier and defined 0.5 to 2.5 s after cue offset as the

1 FieldTrip is an open-source package for the analysis of electrophysiological data
(http://www.ru.nl/fcdonders/fieldtrip).

Fig. 2. The subjects were covertly attending to either the left or right visual
hemifield. Posterior channels were measured and transformed using the FieldTrip
toolbox. Part of the data is reserved for training and part of the data is reserved
for testing. Classifiers were taught from training data using the thresholding and
SLR algorithms (see accompanying text). Classification performance was evaluated
using the test data in terms of classification rate (CR) and information transfer rate
(ITR) using a five-fold cross-validation scheme.

attention period in order to counteract the influence of evoked
potentials due to the cue. Hence, an attention period consisted of
two seconds of covert attention.
In order to test classification performance we used five-fold

cross-validation where data was split five times into 80% training
data and 20% test data and average results are reported. In order
to optimise parameters an additional inner cross-validation was
usedwhere optimal performancewas determined using 20% of the
training data. Fig. 2 depicts how the data ismeasured, transformed,
and finally used for classification.

3. Classification methods

3.1. Lateralisation index

Kelly et al. (2005) obtained the best results using the logarithm
of the left hemisphere (EEG electrodes PO7 and O1) alpha power
divided by the right hemisphere (EEG electrodes PO8 andO2) alpha
power, averaged over the attention period, as input to a linear
discriminant analysis algorithm. As a rough approximation to this
strategy, we use the average over left and right occipito-parietal
MEG channels in order to represent left and right hemisphere
alpha power (8–14 Hz). We refer to the log of right divided
by left hemisphere alpha power as the lateralisation index. This
lateralisation index will be used as input to logistic regression as
a classifier. We used logistic regression instead of discriminant
analysis in order to facilitate the comparison with the other
method used in this paper.2 Logistic regression will effectively

2 Preliminary experiments which varied regions of interest and frequency range
indicated that occipito-parietal channels and 8–14 Hz band power indeed gave
best performance for our data sets. The use of different classifiers based on the
lateralisation index gave comparable results.
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