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a b s t r a c t

It is shown how two of the most common types of feature mapping used for classification of single trial
Electroencephalography (EEG), i.e. spatial and frequency filtering, can be equivalently performed as linear
operations in the space of frequency-specific detector covariance tensors. Thus by first mapping the data
to this space, a simple linear classifier can directly learn optimal spatial+ frequency filters. Significantly,
if the classifier’s loss function is convex, learning these filters is a convex minimisation problem. It is
also shown how to pre-process the data such that the resulting decision function is robust to the biases
inherent in EEG data. Further, based upon ideas from Max Margin Matrix Factorisation, it is shown how
the trace norm can be used to select solutions which have low rank. Low rank solutions are preferred as
they reflect prior information about the types of EEG signals we expect to see, i.e. that the classifiable
information is contained in only a few spatio/spectral pairs. They are also easier to interpret. This feature-
space transformation is compared with the Common-Spatial-Patterns on simulated and real Imagined
Movement Brain Computer Interface (BCI) data and shown to give state-of-the-art performance.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of Brain Computer Interface (BCI) research (Birbaumer
et al., 1999; Wolpaw, Birbaumer, McFarland, Pfurtscheller, &
Vaughan, 2002) is to provide a direct link from human intentions,
as observed in brain signals, to control of computers. One
remarkable feature of current BCI systems is the high complexity
of their feature extractors in comparison to their simple (usually
linear) classifiers. Thus, correctly tuning the feature extractor, by
for example identifying the best spatial filter or spectral band, is
critical to the BCI’s performance. This tuning is generally based
upon either prior knowledge, such as the selection of the 7–30 Hz
band for detecting Event Related Desynchronisation (ERD) in
imagined-movement BCIs, or some approximate measure of the
classifiability of the resulting features, such as r-scores, the derived
feature ‘independence’ used in ICA (Hyvärinen, Karhunen, & Oja,
2001), or ratios of class variances used by CSP (Koles, 1991). This
leads to a complex heterogeneous training process with different
learning algorithms using different objective functions to learn
different parts of the problem.
The contribution of this paper is a simpler unified approach

which integrates the twomost common types of feature extraction
used in BCI, i.e. spatial and spectral filter estimation, within
a single well-regularised convex objective function. It is also
shown that by defining an appropriate kernel function such
combined spatial+ frequency filters canbe learned efficientlywith
conventional kernel methods.

∗ Tel.: +31 243611938; fax: +31 243616066.
E-mail addresses: J.Farquhar@donders.ru.nl, jdrf@zepler.org.

2. Problem setting

BCI Signal extraction can be seen as a type of supervised
Source Separation or beam-forming problem. That is, a region of
the brain generates a class-specific source signal which due to
signal propagation and volume conduction effects (van den Broek,
Reinders, Donderwinkel, & Peters, 1998) is (linearly) mixed with
many other non-class-specific noise signals before being detected
at multiple spatially distributed detectors. That is;

X = A[s(+/−)y ; s1; . . . ; sm−1] = AS, (1)

where X ∈ Rd×T is the signal from d detectors over T sampled
time-points, s(+/−)y ∈ R1×T is the class-dependent source signal,
{s1, . . . , sm−1} are the noise sources, and A ∈ Rd×m is the source
mixing matrix.
The BCI system’s task is therefore to find some transformation

of X which unmixes class-specific sources, sy, from the irrelevant
noise signals such that the class specific signal (s+y or s

−
y ) the user

was generating can be identified with maximal accuracy. How to
find such an unmixing transformation depends on which features
of the source signal sy are class-dependent. In BCI applications
these features are of two main types,

• temporalwhere the signal amplitude itself of the source is class-
dependent
• spectral where the signal’s power in particular frequency bands
is class-dependent.
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3. Classifying temporal sources

Temporal sources form the basis of many successful exogenous
BCI systems. Here an external stimulus evokes a characteristic
temporal response in the detected brain signal which ismodulated
by the level of user attention to the stimulus (Ross, Herdmann, &
Pantev, 2005) — making it class specific. Perhaps the most famous
and successful evoked response BCI is the (Farwell & Donchin,
1988) style p300 visual speller. Here a grid of symbols are displayed
on the screen and flashed in parallel in such away that each symbol
has a unique flash sequence. Thus if the user attends to a specific
character, the brain’s response to its flash sequence can be used to
identify the attended symbol.
Given a particular flash sequence, the classification problem is

one of determining ifX contains an attended, s+y , or unattended, s
−
y ,

manipulation response. If a linear classifier is used to classify the
unmixed, then due to the linearity of the unmixing process (it is
just the inverse of the linear mixing) the combination of unmixing
and classification is also linear. Mathematically this means,

g(S) = 〈S,W (S)
〉 (2)

= Tr(UX(W (S))>) (3)

= Tr((W (S))>UX) (4)

= Tr(W (X)X) = 〈W (X), X〉 (5)

where g(S) is the classifier’s score function over unmixed sources,
U is the matrix which undoes the mixing process, W (S) is the
weight matrix for the linear classifier over unmixed sources, and
W (X) is the equivalent weighting over X . 〈·, ·〉 is used to denote
the Euclidean inner product and its generalisations to matrices
and higher order tensors, in all cases it denotes the sum element-
wise products, e.g. 〈x, y〉 =

∑
i x(i)y(i) for vectors, 〈X, Y 〉 =∑

i,j X(i, j)Y (i, j) for matrices.
Thus, the linearity of the classifier over the unmixed source

features means that for temporal sources, instead of learning the
unmixing matrix and the classifier weights as separate steps,
we can equivalently learn W (X) directly. Furthermore, since
(W (S))>U = W (X), the pairs of unmixing matrix rows (spatial
filters) and source classification weights (temporal filters) can be
extracted fromW (X) by singular-value-decomposition.
Note that in general A is not full rank so the mixing process is

not exactly invertible — thus one cannot extract the signal from a
single source but only a mixture of a few sources. In practice this
is not a problem as detectable sources tend to be large enough
that extracting them is not a problem. In this paper we do not
consider this ill-posedness problem further as our goal is to learn
W (X)

= (W (S))>U directly without estimating (or inverting) A.

4. Classifying spectral sources

Spectral sources are also widely used in BCI. They come in 2
main types, naturally occurring neural oscillations, and externally
evoked oscillations. Imagined movement (Peters, Pfurtscheller, &
Flyvjerg, 2001) BCIs use naturally occurring oscillations in the
µ-(8–14 Hz) and β-(14–30 Hz) bands. By performing real or
imagined body movements, the power in these bands can be
modulated in a spatially localised way, with a power decrease
(Event Related Desynchronisation) during movement and a power
increase (Event Related Synchronisation) afterwards (Pfurtscheller
& Silva, 1999). The main change in power is also localised to the
cortical region responsible for controlling that region of the body.
Thus the user can generate class-dependent source signals by, for
example, imagining moving their left hand for the positive class
and right hand for the negative class. Externally evoked oscillations
are used in the Steady State Evoked Potential (SSEP) BCIs. These

use a high frequency (20–80 Hz) stimulus to induce a neurological
response at the same frequency. As with the temporal BCIs, the
amplitude of this response is modulated by the user’s attention
to the stimulus, allowing them to generate a class-dependent
source. SSEPs have been used in many BCIs across many different
modalities, including visual (Fries, Reynolds, Rorie, & Desimone,
2001), tactile and auditory (Moller, 1974; Picton, John, Dimitrijevic,
& Purcell, 2003; Ross et al., 2005).
Combining source unmixing and classification for temporal

sources is simple because the class-dependent source character-
istic, i.e. its time course, is discriminable with a linear weighting
over the extracted source signal. Thus the classification and un-
mixing can be combined into a single linear operation. Unfortu-
nately, when the class-dependent information is contained in a
more general non-linear characteristic of the source signal, such
as its power, such a direct merging of unmixing and classification
is no longer possible. The rest of this paper shows how for second
order statistics of the source signals, such as band power, unmix-
ing and classification can still be performed as a linear operation
in a transformed feature space. We start by showing how to unmix
and linearly classify signal variances, and then extend this result to
unmixing and classifying band-powers.

4.1. Classifying signal variances

Consider the case where the feature of interest is simply the
variance of the source. Given the source unmixing matrix, U , the
signal variance can be computed for source k as, σk = sks>k =
[UkX][UkX]> = UkΣU>k , whereΣ = XX

> is the signal covariance,
and Uk is the kth row of U . Thus, the unmixed signal variance,
σk, can be computed as a quadratic transformation of the signal
covariance. The key problem for classification is thus to find the
spatial filters which equal the source rows of the unmixing matrix.

4.1.1. Common spatial patterns (CSP)
Directly finding spatial filters which provide good classification

performance for signal variance features is the core problem
addressed by the CSP algorithm (Blankertz, Tomioka, Lemm,
Kawanabe, & Müller, 2008; Koles, Lazar, & Zhou, 1990). CSP finds
its spatial filters, w(σ ), by simultaneously maximising the signal
variance for trials in one class,w(σ )Σ+w(σ ), whilst minimising the
variance in the other class(es),w(σ )Σ−w(σ ).Σ+/− is the total data
covariance over all positive (resp. negative) class trials. CSP does
this by maximising the ratio of class variances. This is equivalent
to maximising a Rayleigh quotient which in turn is equivalent to
solving the generalised eigenvalue problem,

Σ+w(Σ)
= λΣ−w(Σ), (6)

where,λ is the eigenvalue of this solution.1 Solving this generalised
eigenvalue problemone finds a full class-focused unmixingmatrix,
W . Further, CSP has the nice property that the eigenvalue λ equals
the spatial filters per-class variance ratio. This is one measure of
classification performance and is commonly used to select which
subset of CSP’s spatial filters should be used.
CSP is very widely used because of its simplicity and high

performance. The biggest problem with CSP is that its ratio-of-
variances objective function can be sensitive to outliers leading to
over-fitting. Many variants of CSP have been developed to address
this problem (Blankertz et al., 2007; Farquhar, Hill, Lal, & Schölkopf,
2006). However, a better solution is to develop alternativemethods
which merge the unmixing process with classification in such a
way that any robust classification objective can be used. In the next
section we show how this can be done using a linear feature-space
transformation for variance features.

1 There are many equivalent formulations of a binary CSP.
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