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a b s t r a c t

Adaptive classification is a key function of Brain Computer Interfacing (BCI) systems. This paper proposes
robust mathematical frameworks and their implementation for the on-line sequential classification of
EEG signals in BCI systems. The proposed algorithms are extensions to the basic method of Andrieu
et al. [Andrieu, C., de Freitas, N., and Doucet, A. (2001). Sequential bayesian semi-parametric binary
classification. In Proc. NIPS],modified to be suitable for BCI use.We focus on the inference andprediction of
target labels under a non-linear and non-Gaussianmodel. In this paper we introduce two new algorithms
to handle missing or erroneous labeling in BCI data. One algorithm introduces auxiliary labels to process
the uncertainty of the labels and the other modifies the optimal proposal functions to allow for uncertain
labels. Although we focus on BCI problems in this paper, the algorithms can be generalized and applied
to other application domains in which sequential missing labels are to be imputed under the presence of
uncertainty.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The goal of Brain Computer Interfacing (BCI) is to enable
computer operation by manipulation of the brain’s signals rather
than by physical means (Pfurtscheller, Flotzinger, & Kalcher, 1993;
Wolpaw, McFarland, Neat, & Forneris, 1991). Many classification
approaches have been studied to process and analyze non-
stationary signals with subject training (Babiloni et al., 2000;
Dornhege, Blankertz, Curio, & Muller, 2004; Muller, Anderson, &
Birch, 2003; Sugiyama, Krauledat, & Muller, 2007). However, it is
known that the generation and control of brain activity for BCI
use, when recorded using non-invasive methods (typically via the
electroencephalogram or EEG), often requires extensive subject
training before a reliable communication channel is formed. In
order to reduce the overheads of training, tracking non-stationarity
and to cope rapidly with new subjects, adaptive approaches to the
core data modeling have been developed for BCI systems. Such
adaptive approaches differ from the typical methodology, inwhich
an algorithm is trained off-line on retrospective data, in so far that
the process of learning is continuously taking place rather than
being confined to a section of training data. In the signal processing
andmachine learning communities, this is referred to as sequential
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classification. Previous research in this area applied to BCI data
has used state space modeling of the time series (Lowne, Haw, &
Roberts, 2006; Penny, Roberts, Curran, & Stokes, 2000; Sykacek,
Roberts, & Stokes, 2004). In particular,wehave investigated the use
of the Extended Kalman Filter (EKF) for BCI systems (Yoon, Roberts,
Dyson, & Gan, 2008a, 2008b). The EKF offers one framework for
approximating the non-linear linkage between observations and
decisions (via the logistic function). There are several alternative
ways to approach this non-linear state spacemapping, in particular
the Unscented Kalman Filter (UKF) (Julier & Uhlmann, 1997),
based on an alternate approximation scheme, and the Particle
Filter (PF) (Chen & Liu, 2000; Doucet, Godsill, & Andrieu, 2000;
Liu, 2001) based on Sequential Monte Carlo sampling. There has
been some significant research addressing adaptive classification
using Sequential Monte Carlo (SMC) filters (Andrieu, de Freitas, &
Doucet, 2001; Hojen-Sorensen, de Freitas, & Fog, 2000). Although
the SMC algorithm based on Rao-Blackwellization by Andrieu et al.
(2001) is regarded as the most efficient sampling algorithm for
online classification, it cannot be directly applied for use in BCI
systems for two major reasons. First, the output function takes
the target labels (the decision classes) to be time independent,
i.e. there is no explicit Markov dependency from one decision
to the next. This is a poor model for the characteristics of a BCI
interface, at the sample rate we operate at (over 0.2 s intervals),
in which sequences of labels of the same class persist for several
seconds before making a transition. What we require, therefore,
is a model similar to a Markov process in which decisions persist
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until evidence for a change point accumulates. Secondly, standard
SMC approaches assume that an observed label is certain, i.e. there
are no ‘bit errors’ in the label stream. This assumption provides
SMC methods efficient proposal functions by using a truncated
distribution (Andrieu et al., 2001).
We do not, however, know the ground truth of the labels in BCI

systems — we have only imperfect labels, such as those obtained
in this study from electromyography (EMG) signals, which may be
used as a reference. The assumption of error-free labels is hence
invalid. However, sampling using the SMC method without this
assumption is far less efficient since the proposal function without
truncation is not designed efficiently (Andrieu et al., 2001). In order
to address these two problems, we have developed two different
algorithms. One algorithm introduces an auxiliary latent variable
which corresponds to the underlying labels. The other algorithm
samples from a proposal distribution which has probability over
both label classes.
This paper is organized as follows. Section 2 presents the back-

ground of state space modeling in time series. In Section 3 the
mathematical models which we propose for BCI systems are de-
scribed. The proposed algorithms are described in Section 4. Both
synthetic and real experimental data sets are then tested to com-
pare performances in Sections 5 and 6 respectively. In Section 7,
we also discuss the practicality of a SMC classifier in BCI systems
with several views: implementation, computational efficiency and
scalability with respect to class labels and EEG channels.

2. Time series state space models in a Bayesian framework

We first consider a Bayesian sequential estimation framework
for state space models. We describe the general framework for
a dynamic model with state space ht and observation space
ot , where t denotes the discrete time index. The distribution
of interest is the posterior, p(ht |o1:t) where o1:t represents a
shorthand notation for (o1, . . . , ot). In the Bayesian sequential
estimation framework, the posterior distribution is obtained by the
following two step recursion:

prediction step

p(ht |o1:t−1) =
∫
p(ht |ht−1)p(ht−1|o1:t−1)dht−1 (1)

filtering step

p(ht |o1:t) =
p(ot |ht)p(ht |o1:t−1)
p(ot |o1:t−1)

. (2)

This recursion requires the specification of twomodels; a dynamic
update model for the hidden states p(ht |ht−1) and a model for
the state likelihood given the current measurement p(ot |ht). The
recursion is initialized with some prior distribution for the initial
state p(h0). The dynamic update and likelihood models are given
by, ht = Ft(ht−1,Ut) and ot = Gt(ht , Vt) where Ft and Gt can
be regarded as either non-linear or linear functions corrupted by
noise, Ut and Vt at time t . However, if Ft(·) and Gt(·) are non-
linear and Ut and Vt are non-Gaussian noise, we may approximate
the non-linearities using the first and second derivatives of the
function in a linearmodel. This approximation enables us to use the
standard Kalman filter framework and the approach is commonly
referred to as the Extended Kalman Filter (EKF). Alternatively, we
can avoid the linearization approximations by using Monte Carlo

paradigms. These are referred to as Sequential Monte Carlo (SMC)
methods, and are detailed in Appendix A.

3. Mathematical model for BCI classification with label uncer-
tainty

Our proposed algorithms are based on a kernel probit classi-
fier (regression) model. Given an observed input xt at time t =
1, 2, . . . , T , we observe an associated target, zt ∈ {0, 1}. The
observation label is defined zt ∈ {0, 1}, such that Pr(zt =
1|xt ,wt) = Φ(f (xt ,wt)) where Φ(·) is the cumulative distri-
bution function of the standard normal distribution and the vec-
tor wt represents the time-varying regression weights. The state
space model for the BCI system can hence be regarded as a hierar-
chical model since the noise of observations influences the model
indirectly through the probit regression model. Suppose that we
have radial basis functions ϕt(xt) from an input vector xt at time t .
To simplify notation, we use ϕt instead of ϕt(xt) i.e. ϕt = ϕt(xt) =[
x′t {φ

1
t (xt)}

′
{φ2t (xt)}

′
· · · {φ

Nb
t (xt)}

′ 1
]′
where φit(xt)

denotes the ith Gaussian basis function, Nb is the number of ba-
sis functions and ′ denotes a transpose operator. Such an indirect
influencemakes for amore complicatedmodel, butwe can circum-
vent much of this complexity by forming a three stage state space
model and by introducing an auxiliary variable yt . The latter vari-
able acts so as to link the indirect relationships between observa-
tions and the probit regression model given by

p(zt |yt) = Φ(yt)zt (1− Φ(yt))1−zt

yt = ϕTt (xt)wt + vt
wt = wt−1 + ut (3)

where vt and ut respectively explain the uncertainty in the sys-
tem and regression coefficients with vt ∼ N (0, κt) and ut ∼
N (0, τt I); the hyper-parameters κt and τt denote the covariances
of states yt and wt . We set up κt = 1 and τt = 1 in this paper
as used in Andrieu et al. (2001). N (·, ·) represents normal distri-
bution with mean and covariance. Eq. (3) is formed from our pre-
vious work (Yoon et al., 2008a, 2008b). To allow for mis-labeling,
we modify the model by introducing an underlying hidden set of
labels, z̄t giving a modified hierarchical model, namely:

p(zt |z̄t , ρ) = ρδ(zt−z̄t )(1− ρ)1−δ(zt−z̄t )

p(z̄t |yt) = Φ(yt)z̄t (1− Φ(yt))1−z̄t

yt = ϕTt (xt)wt + vt
wt = wt−1 + ut (4)

where ρ is the matching probability between zt and z̄t and δ(·) de-
notes the Dirac delta function. In this mathematical model, we also
introduce a variable π which parameterises the Markov transition
probability between z̄t and z̄t−1. TheMarkov property of z̄t is hence
p(z̄t |z̄t−1, π) = π δ(z̄t−z̄t−1)(1 − π)1−δ(z̄t−z̄t−1). This probability can
explain the continuity anddependency of the labels since the labels
are not independent of the time series as assumed in other litera-
ture (Andrieu et al., 2001; Lowne et al., 2006; Yoon et al., 2008a).

3.1. Priors

In Bayesian statistics, we need to choose prior distributions
carefully (Bernardo & Smith, 1994). The prior distributions for the
hidden states are described by p(y0) = N (·; 0,Σy0), p(w0) =
N (·; 0,Σw0), p(ρ) = B(ρ;αρ, βρ) and p(π) = B(π;απ , βπ )
whereB denotes beta distribution.We infer the hyper-parameters
αρ , βρ , απ and βπ by EKF simulation with a short length of burn-
in training data (500 samples with 5 events). The prior transition
kernel of the hidden labels is defined as:
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