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a b s t r a c t

In this paper we present in a continuous-time framework an online approach to direct adaptive optimal
control with infinite horizon cost for nonlinear systems. The algorithm converges online to the optimal
control solution without knowledge of the internal system dynamics. Closed-loop dynamic stability
is guaranteed throughout. The algorithm is based on a reinforcement learning scheme, namely Policy
Iterations, and makes use of neural networks, in an Actor/Critic structure, to parametrically represent
the control policy and the performance of the control system. The two neural networks are trained to
express the optimal controller and optimal cost function which describes the infinite horizon control
performance. Convergence of the algorithm is proven under the realistic assumption that the two
neural networks do not provide perfect representations for the nonlinear control and cost functions.
The result is a hybrid control structure which involves a continuous-time controller and a supervisory
adaptation structure which operates based on data sampled from the plant and from the continuous-
time performance dynamics. Such control structure is unlike any standard form of controllers previously
seen in the literature. Simulation results, obtained considering two second-order nonlinear systems, are
provided.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In an environment in which a number of players compete for
a limited resource, optimal behavior with respect to desired long
term goals leads to long term advantages. In a control engineering
framework the role of the environment is played by a system
to be controlled (this ranges from industrial processes such as
distillation columns and power systems, to airplanes, medical
equipment and mobile robots), while the controller, equipped
with sensors and actuators, plays the role of the agent which is
able to regulate the state of the environment such that desired
performances are obtained. An intelligent controller is able to
adapt its actions in front of unforeseen changes in the system
dynamics. In the case inwhich the controller has a fixed parametric
structure, the adaptation of controller behavior is equivalent to
changing the values of the controller parameters. From a control
engineering perspective, not every automatic control loop needs
to be designed to exhibit intelligent behavior. In fact in industrial
process control there exists a hierarchy of control loops which
has at the lowest level the simplest and most robust regulation,
which provides fast reaction in front of parametric and non-
parametric disturbances without controller adaptation, while at
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the topmost end are placed the so-called money-making loops,
whose operation close to optimality has the greatest impact on
maximization of income. In the latter case the control performance
is not explicitly defined in terms of desired trajectories for the
states and/or outputs of the system; instead it is implicitly
expressed through a functional that captures the nature of the
desired performance in a more general sense. Such an optimality
criterion characterizes the system’s performance in terms of
the control inputs and system states; it is in fact an implicit
representation of a desired balance between the amount of effort
invested in the control process and the resulting outputs.
Optimal control refers to a class of methods that can be used to

synthesize a control policy which results in best possible behavior
with respect to the prescribed criterion (i.e. control policy which
leads to maximization of performance). The solutions of optimal
control problems can be obtained either by using Pontryagin’s
minimum principle, which provides a necessary condition for
optimality, or by solving the Hamilton–Jacobi–Bellman (HJB)
equation, which is a sufficient condition (see e.g. Kirk (2004)
and Lewis and Syrmos (1995)). Although mathematically elegant,
both approaches present a major disadvantage posed by the
requirement of complete knowledge of the system dynamics.
In the case when only an approximate model of the system
is available, the optimal controller derived with respect to the
system’s model will not perform optimally when applied for the
control of the real process. Thus, adaptation of the controller
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parameters such that operation becomes optimal with respect to
the behavior of the real plant is highly desired.
Adaptive optimal controllers have been developed either by

adding optimality features to an adaptive controller (e.g. the
adaptation of the controller parameters is driven by desired
performance improvement reflected by an optimality criterion
functional) or by adding adaptive features to an optimal controller
(e.g. the optimal control policy is improved relative to the
adaptation of the parameters of the model of the system). A third
approach to adaptive optimal control (Sutton, Barto, & Williams,
1992), namely reinforcement learning (RL) (Sutton & Barto, 1998),
was introduced and extensively developed in the computational
intelligence and machine learning societies, generally to find
optimal control policies for Markovian systems with discrete state
and action spaces (Howard, 1960). RL-based solutions to the
continuous-time optimal control problemhave been given in Baird
(1994) and Doya (2000). The RL algorithms are constructed on
the idea that successful control decisions should be remembered,
by means of a reinforcement signal, such that they become more
likely to be used a second time. Although the idea originates
from experimental animal learning, where it has been observed
that the dopamine neurotransmitter acts as a reinforcement
informational signal which favors learning at the level of the
neuron (see e.g. Doya, Kimura, and Kawato (2001) and Schultz,
Tremblay, and Hollerman (2000)), RL is strongly connected from a
theoretical point of view with direct and indirect adaptive optimal
control methods. In the present issue, Werbos (2009) reviews
four generations of general-purpose learning designs in Adaptive,
Approximate Dynamic Programming, which provide approximate
solutions to optimal control problems and include reinforcement
learning as a special case. He argues the relevance of suchmethods
not only for the general goal of replicating human intelligence
but also for bringing a solution of efficient regulation in electrical
power systems.
The main advantage of using RL for solving optimal control

problems comes from the fact that a number of RL algorithms,
e.g. Q-learning (Watkins, 1989) (also known as Action Dependent
Heuristic Dynamic Programming (Werbos, 1989, 1992)), do
not require knowledge or identification/learning of the system
dynamics. This is important since it is well known that modeling
and identification procedures for the dynamics of a given nonlinear
system are most often time consuming iterative approaches
which require model design, parameter identification and model
validation at each step of the iteration. The identificationprocedure
is even more difficult when the system has hidden nonlinear
dynamics which manifest only in certain operating regions. In the
RL algorithms’ case the learning process is moved at a higher level
having no longer as an object of interest the system’s dynamics
but a performance index which quantifies how close to optimality
the closed-loop control system operates. In other words, instead of
identifying a model of the plant dynamics, that will later be used
for the controller design, the RL algorithms require identification of
the static mapwhich describes the system performance associated
with a given control policy. One sees now that, as long as enough
information is available to describe the performance associated
with a given control policy at all significant operating points of the
control system, the systemperformancemap can be easily learned,
conditioned by the fact that the control systemmaintains stability
properties. This is again advantageous compared with an open-
loop identification procedure which, due to the excitatory inputs
required for making the natural modes of the system visible in the
measured system states, could have as a result the instability of the
system.
Even in the case when complete knowledge of the system

dynamics is available, a second difficulty appears from the fact
that the HJB equation, underlying the optimal control problem, is

generally nonlinear and most often does not possess an analytical
solution; thus the optimal control solution is regularly addressed
by numerical methods (Huang & Lin, 1995). Also from this point
of view, RL algorithms provide a natural approach to solve the
optimal control problem, as they can be implemented my means
of function approximation structures, such as neural networks,
which can be trained to learn the solution of the HJB equation.
RL algorithms, such as the one that we will present in Section 3,
and develop for online implementation in Section 4, can easily be
incorporated in higher-level decisionmaking structures of the sort
presented in (Brannon, Seiffertt, Draelos, & Wunch, 2009).
RL algorithms can be implemented on Actor/Critic structures

which involve two function approximators, namely the Actor,
which parameterizes the control policy, and the Critic, a paramet-
ric representation for the cost functionwhich describes the perfor-
mance of the control system. In this case the solution of the optimal
control problem will be provided in the form of the Actor neural
network for which the associated cost, i.e. the output of the Critic
neural network, has an extremal value.
In this paper we present an adaptive method, which uses

neural-network-type structures in an Actor/Critic configuration,
for solving online the optimal control problem for the case of
nonlinear systems, in a continuous-time framework, without
making use of explicit knowledge on the internal dynamics of the
nonlinear system. The method is based on Policy Iteration (PI), an
RL algorithmwhich iterates between the steps of policy evaluation
and policy improvement. The PI method starts by evaluating
the cost of a given admissible initial policy and then uses this
information to obtain a new control policy, which is improved in
the sense of having a smaller associated cost compared with the
previous policy, over the domain of interest in the state space. The
two steps are repeated until the policy improvement step no longer
changes the present policy, this indicating that the optimal control
behavior is obtained.
In the case of continuous-time systemswith linear dynamics, PI

was employed for finding the solution of the state feedback optimal
control problem (i.e. LQR) in Murray, Cox, Lendaris, and Saeks
(2002), while the convergence guarantee to the LQR solution was
given in Kleinman (1968). The PI algorithm, as used by Kleinman
(1968), requires repetitive solution of Lyapunov equations, which
involve complete knowledge of the system dynamics (i.e. both
the input-to-state and internal system dynamics specified by the
plant input and system matrices). For nonlinear systems, the PI
algorithm was first developed by Leake and Liu (1967). Three
decades later it was introduced in Beard, Saridis, and Wen (1997)
as a feasible adaptive solution to the CT optimal control problem.
In Beard et al. (1997) the Generalized HJB equations (a sort of
nonlinear Lyapunov equations), which appear in the PI algorithm,
were solved using successive Galerkin approximation algorithms.
A neural-network-based approachwas developed and extended to
the cases of H2 and H-infinity with constrained control in Abu-
Khalaf and Lewis (2005) and Abu-Khalaf, Lewis, and Huang (2006).
Neural-network-based Actor/Critic structures, in a continuous-
time framework, with neural network tuning laws have been given
in Hanselmann, Noakes, and Zaknich (2007). All of the above-
mentioned methods require complete knowledge of the system
dynamics.
In Vrabie, Pastravanu, and Lewis (2007) and Vrabie and

Lewis (2008) the authors gave a new formulation of the PI
algorithm for linear and nonlinear continuous-time systems. This
new formulation allows online adaptation (i.e. learning) of the
continuous-time operating controller to the optimal state feedback
control policy, without requiring knowledge of the system internal
dynamics (knowledge regarding the input-to-state dynamics is
still required, but from a system identification point of view this
knowledge is relatively easier to obtain).
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