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a b s t r a c t

We review two forms of immediate reward reinforcement learning: in the first of these, the learner is a
stochastic node while in the second the individual unit is deterministic but has stochastic synapses. We
illustrate the first method on the problem of Independent Component Analysis. Four learning rules have
been developed from the second perspective andwe investigate the use of these learning rules to perform
linear projection techniques such as principal component analysis, exploratory projection pursuit and
canonical correlation analysis. The method is very general and simply requires a reward function which
is specific to the function we require the unit to perform. We also discuss how the method can be used
to learn kernel mappings and conclude by illustrating its use on a topology preserving mapping.

Crown Copyright© 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement learning describes a group of techniques for
parameter adaptation based on amethodologywhich envisages an
agentmaking an exploratory investigation of its environment with
a view to identifying the optimal strategy for actions within the
environment: optimal is defined in terms of the reward which an
agent can gain from taking actions in the environment. It is often
thought of as lying between the extremes of supervised learning
in which the best action to take is known, and the parameters
are adjusted to make this more likely in future, and unsupervised
learning in which the learning algorithm must self-organise the
parameters in order to perform the specific exploratory data
analysis task at hand.

However there has always been a stream of research which
has described methods of performing supervised learning tasks
using reinforcement learning methods (Williams, 1992) and more
recently, (Ma & Likharev, 2007). A somewhat less prominent
stream has been using reinforcement learning methods for
unsupervised learning tasks (Likas, 2000). The REINFORCEmethod
of Williams (1992) has recently been used for kernel projection
techniques (Fyfe & Lai, 2007) and for topology preserving
mappings (Lai & Fyfe, 2007). In this paper, we investigate the
reinforcement learning methods of Williams (1992) applied to
Independent Component Analysis and the method of Ma and
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Likharev (2007) for general unsupervised projection techniques.
This paper extends the work presented at ICANN2007 (Wu, Fyfe,
& Lai, 2007).

2. Immediate reward reinforcement learning

Williams and Pong (1991) and Williams (1992) investigated a
particular form of reinforcement learning in which reward for an
action is immediatewhich is somewhat different frommainstream
reinforcement learning (Kaelbling, Littman, &Moore, 1996; Sutton
& Barto, 1998). Williams (1992) considered a stochastic learning
unit in which the probability of any specific output was a
parameterised function of its input vector, x. For the ith unit, this
gives

P(yi = ζ |wi, x) = f (wi, x) (1)

where, for example,

f (wi, x) =
1

1 + exp(−‖wi − x‖2)
(2)

wi is used here and throughout this paper as the vector of
parameters used by the ith agent. Williams (1992) considers the
learning rule

∆wij = αij(ri,ζ − bij)
∂ ln P(yi = ζ |wi, x)

∂wij
(3)

where αij is the learning rate, ri,ζ is the reward for the unit
outputting ζ and bij is a reinforcement baseline which in the
following we will take as the reinforcement comparison, bij = r =
1
K

∑
ri,ζ where K is the number of times this unit has output ζ .
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Williams (1992, Theorem 1) shows that the above learning rule
causes weight changes which maximise the expected reward.

Williams (1992) gave the example of a Bernoulli unit in which
P(yi = 1) = pi and so P(yi = 0) = 1 − pi. Therefore

∂ ln P(yi)
∂pi

=


−

1
1 − pi

if yi = 0

1
pi

if yi = 1
=

yi − pi
pi(1 − pi)

. (4)

Likas (2000) applies the Bernoulli model to (unsupervised)
clustering with

pi = 2(1 − f (wi, x)) = 2
(
1 −

1
1 + exp(−‖wi − x‖2)

)
. (5)

The environment identifies the pi∗ which is maximum over all
output units and yi∗ is then drawn from this distribution. Rewards
are given such that

ri =

{1 if i = i∗ and yi = 1
−1 if i = i∗ and yi = 0
0 if i 6= i∗.

(6)

This is used in the update rule (3) with bij = 0, ∀i, j to give

1wij = αri(yi − pi)(xj − wij) (7)

= α|yi − pi|(xj − wij) for i = i∗ (8)

where xj is the jth element of x and wij is the corresponding
jth element of wi. This rule is shown to perform clustering
of the data set. Such methods have recently been used for
kernel projection techniques (Fyfe & Lai, 2007) and for topology
preserving mappings (Lai & Fyfe, 2007).

3. Projection with immediate reward learning

In this section, we apply immediate reward reinforcement
learning to Independent Component Analysis. Under the frame-
work of reinforcement learning, we consider that each agent is
deemed to be taking actions in an environment that consists of
data to be explored, in order to maximise the reward in this en-
vironment. Each agent has a set of parameters,wi, which are sam-
ples fromN (mi, β

2
i I), the Gaussian distribution withmeanmi and

varianceβ2
i . Although different projectionmethods have their own

objective functions, they share the common property that the re-
ward function determines how well actions have been chosen ac-
cording to the states in the environment. We illustrate this on the
Independent Component Analysis problem for which a number of
criteria have been developed.

3.1. Independent component analysis

Independent Component Analysis (ICA) has become, in recent
years, a well established data analysis technique for data mining
(see Hyvarinen, Karhunen, and Oja (2001), Almeida (2003) and
Girolami (1998)). ICA defines a generative model for the observed
multivariate data, which is typically given as a large database
of samples. In the model, the data variables are assumed to be
linear mixtures of some unknown latent variables, and the mixing
system is also unknown. The latent variables are assumed to be
non-Gaussian and mutually independent, and they are called the
independent components of the observed data. These independent
components (ICs), also called sources, can be found by ICA.

In detail, we consider ICA as the problem of transforming a set
of D-dimensional observations x1, . . . , xN that are the result of
a linear mixing of statistically independent sources s1, . . . , sN by
x = As, into several components that are statistically independent

by y = Wx. The independent sources sj are often defined as latent
variables, which means that they cannot be observed directly. At
the same time, themixingmatrixA is also assumed to be unknown.
Thus all we observe are the random variables xi, and we must
estimate both the independent components si and the mixing
matrix.

ICA can also be seen as an extension to principal component
analysis. Independent components are assumed statistically inde-
pendent, while PCA aims to find a subpace in which the principal
components are uncorrelated, which is a weaker form of indepen-
dence.When performing ICA,whitening is frequently used as a pre-
processing step in ICA to give the ICs up to an orthogonal transfor-
mation. Consequently, before performing an ICA algorithm,we first
linearly transform the mixed data set x by multiplying it by some
matrix V,

z = Vx (9)

so that the new vector z has components that are uncorrelated
and whose variances equal unity. V may, for example, be found by
Principal Component Analysis of the data set. Thus the covariance
matrix of z equals the identity matrix, E{zzT } = I . Although
uncorrelatedness is weaker than independence and prewhitening
only finds the ICs up to an orthogonal transformation, it is still
helpful in that we can search for the demixing matrix W in the
space of orthogonal matrices.

3.2. Reinforcement learning applied to ICA

The most common principle for ICA is to make all components
as non-Gaussian as possible. Thus, we optimise the demixing
matrix W by measuring the kurtosis of the distribution of Wx
where each rowwi ofW corresponds to one stochastic unit. Given
the prewhitened observations, we wish to maximise the absolute
values of the kurtosis of each output component and the reward
function is thus defined as

ri = |kurt(wT
i x)|. (10)

As we have stated above, the optimization of the reward function
can be related to the update vector in weight space, E{1W|W}.
Each componentwi is sampled from a Gaussian distribution,wi ∼

N (mi, β
2
i ) so that we now have two parameters to learn for each

component, its meanmi and variance β2
i . Thus since

1wij = αij(ri,ξ − bij)
∂ ln P(yi = ξ |wi, x)

∂wij

and we have

ln P(yi = ξ |mi, βi, x) ∝ −
(wi − mi)

2

β2
i

. (11)

Then 1mi = αm(ri − r̄i)
∂ ln P(yi = ξ |mi, β

2
i , x)

∂mi
(12)

1βi = αβ(ri − r̄i)
∂ ln P(yi = ξ |mi, β

2
i , x)

∂βi
. (13)

Note thatweuse r̄i sincewewill later usemultiple agents searching
to maximise their own individual rewards. We thus update the
parameters of the sampled distribution for each stochastic unit
with the rules

1mi = αm(ri − r̄i)
wi − mi

β2
i

(14)

1βi = αβ(ri − r̄i)
‖wi − mi‖

2
− β2

i

β3
i

(15)
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