
Neural Networks 21 (2008) 862–871

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2008 Special Issue

Event detection and localization for small mobile robots using
reservoir computing
E.A. Antonelo ∗, B. Schrauwen, D. Stroobandt
Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

a r t i c l e i n f o

Article history:
Received 16 January 2008
Received in revised form
21 April 2008
Accepted 17 June 2008

Keywords:
Reservoir Computing
Robot localization
Event detection

a b s t r a c t

Reservoir Computing (RC) techniques use a fixed (usually randomly created) recurrent neural network,
or more generally any dynamic system, which operates at the edge of stability, where only a linear
static readout output layer is trained by standard linear regression methods. In this work, RC is used for
detecting complex events in autonomous robot navigation. This can be extended to robot localization
tasks which are solely based on a few low-range, high-noise sensory data. The robot thus builds an
implicitmapof the environment (after learning) that is used for efficient localization by simply processing
the input stream of distance sensors. These techniques are demonstrated in both a simple simulation
environment and in the physically realistic Webots simulation of the commercially available e-puck
robot, using several complex and even dynamic environments.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Autonomous robot navigation systems have been extensively
developed in the literature (Antonelo, Baerlvedt, Rognvaldsson, &
Figueiredo, 2006; Arkin, 1998; Guivant, Nebot, & Baiker, 2000).
Early navigation strategies are either deliberative (generation of
robot trajectories based on path planning) or reactive (robot
control based on a direct mapping of sensory input to actions).
Current state-of-the-art autonomous robot control architectures
are hybrid (Arkin, 1998): they have an underlying reactive
controller which takes care of the real-time basic behaviors such
as obstacle avoidance; while an upper deliberative control layer
steers this reactive part for performing declarative high level tasks
such as planning. Information flow in this architecture is both
downwards, from abstract deliberative tasks to concrete physical
reactive behaviors, and upwards, from physical data to abstract
symbols used for deliberative planning.

This paper investigates two cases of upward information flow: a
system for recognizing complex events in particular environments
(such as detecting if the robot goes through a door); and a system
for determining the current robot location. Both are based solely
on low-range, high-noise sensory information, typically found in
small and cheap mobile robots. Both tasks are achieved using the
same setup.

These tasks have been shown to be difficult (Bailey & Durrant-
Whyte, 2006). Traditional algorithms based on the Simultaneous

∗ Corresponding author. Tel.: +32 9 264 3404; fax: +32 9 264 35 94.
E-mail address: eric.antonelo@elis.ugent.be (E.A. Antonelo).
URL: http://www.elis.ugent.be/SNN (E.A. Antonelo).

Localization and Mapping (SLAM) concept are expensive to
implement due to high computational and memory demands and
also hold uncertainties during the calculation of the robot’s pose
(Bailey & Durrant-Whyte, 2006). They usually need high precision
ranging data from, for example, a 2D laser range scanner. These
devices are currently still very expensive, consume a lot of power,
and cannot be applied in small robots. Cheap, small and lightweight
robots that have a high battery autonomy will thus not be able to
use a SLAM-based approach. These robot platforms usually only
have access to a limited number of ranging sensors which are low
range and have high noise.

This work uses an implicit way of forming a representation
of the robot’s environment that is based on a Recurrent Neural
Network (RNN), more specifically using Reservoir Computing
(RC). This is a term that groups three similar computing
techniques, namely, Echo State Networks (Jaeger, 2001a), Liquid
State Machines (Maass, Natschläger, & Markram, 2002), and
BackPropagation DeCorrelation (Steil, 2004). All three techniques
are characterized by having a fixed (usually random) RNN that is
used as a reservoir of rich dynamics and a linear static readout
output layer (see Fig. 1). Only the readout layer is trained by
supervised learning, while the recurrent part of the network (the
so called reservoir) has fixed weights, but is scaled so that its
dynamic regime is at the edge of stability. Theoretical analysis of
reservoir computing methods (Jaeger, 2001b) and a broad range
of applications (Verstraeten, Schrauwen, D’Haene, & Stroobandt,
2007) (which sometimes even drastically outperform the current
state-of-the-art (Jaeger & Haas, 2004)) show that RC is very
powerful and overcomes many of the problems of traditional
RNN training such as slow convergence, bifurcations and high
computational requirements.

0893-6080/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2008.06.010

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:eric.antonelo@elis.ugent.be
http://www.elis.ugent.be/SNN
http://www.elis.ugent.be/SNN
http://www.elis.ugent.be/SNN
http://www.elis.ugent.be/SNN
http://www.elis.ugent.be/SNN
http://www.elis.ugent.be/SNN
http://dx.doi.org/10.1016/j.neunet.2008.06.010

E.A. Antonelo et al. / Neural Networks 21 (2008) 862–871 863

The short-term memory, present in these networks, is crucial
for solving the event detection and localization tasks. It is not only
the instantaneous sensory inputs that are needed to solve the tasks,
but also the sensory history (Schönherr, Cistelecan, Hertzberg, &
Christaller, 2001) and dynamics.

It has already been shown in Hertzberg, Jaeger, and Schönherr
(2002) that RC can be used to detect events in an autonomous
robot setting. This work extends these results by also considering
dynamic environments for event detection, and goes largely
beyond that work by using it to construct implicit maps of the
environment for robot localization.

The idea of employing a neural network as a localization
model for the robot is also inspired by biological systems.
Experiments accomplished on rats show that their hippocampus
forms activation patterns that are associated with locations visited
by the rat. These so called place cells encode the spatial location
of the animal into its environment. They fire when the animal is
in a particular location (O’Keefe & Dostrovsky, 1971). A similar
approach is used in this work where distinct outputs are used
to encode specific locations in the environment. Other models
in literature seek to represent place cells by using: unsupervised
growing networks and Hebbian-type learning rules between
neural populations (Arleo, Smeraldi, & Gerstner, 2004; Stroesslin,
Sheynikhovich, Chavarriaga, & Gerstner, 2005); and a hierarchy of
Slow Feature Analysis nodes for self-organized formation of place
cells (Franzius, Sprekeler, &Wiskott, 2007) (thesemodels are based
on visual (pixel-based) stimuli as external sensory input).

The experiments in this work1 are performed using both an
autonomous robot simulator developed by Antonelo et al. (2006)
and the physically realistic Webots (Michel, 2004) simulation of
an e-puck robot (e-puck, 2007). The datasets generated by these
simulators are used to train a RC system to detect events as well
as to predict the robot location in several complex and dynamic
environments. The training is done in a supervised fashion, but we
plan to develop an autonomous and on-line way of learning novel
locations as the robot drives in its environment (resembling the
place cells in biological systems).

This work is organized as follows. In Section 2 we give an
overview of Reservoir Computing as well as the RC model used
for the following robotic experiments. Section 3 presents the two
different robot models and simulators used in the experiments.
The problems of event detection and robot localization (and their
respective experimental results) are presented in Sections 4 and 5,
respectively. Conclusions and future research directions are given
in Section 6.

2. Reservoir computing

In this work, we use the Echo State Network approach as
learning model for performing event detection as well as robot
localization.

An ESN is composed of a discrete hyperbolic-tangent RNN (i.e.,
the reservoir) and a linear readout output layer which maps the
reservoir states to the desired output. The general state update
equation for the nodes in the reservoir and the readout output
equation are as follows:

x(t + 1) = f
(
Wres

resx(t) + Wres
inpu(t) + Wres

outy(t) + Wres
bias

)
(1)

y(t + 1) = Wout
res x(t + 1) + Wout

inpu(t) + Wout
outy(t) + Wout

bias (2)

where: u(t) denotes the input at time t; x(t) represents the
reservoir state; y(t) is the output; and f () = tanh() is the

1 This paper is an extended version of Antonelo, Schrauwen, Dutoit, Stroobandt,
and Nuttin (2007b) which was presented at ICANN 2007.

Fig. 1. Reservoir Computing network. The reservoir is a dynamical system of
recurrent nodes. Solid lines represent connections which are fixed. Dashed lines
are the connections which can be trained.

hyperbolic tangent activation function (most common type of
activation function used for ESNs). The initial state is set to
x(0) = 0. All weight matrices to the reservoir (denoted as Wres

·
)

are initialized randomly (represented by solid arrows in Fig. 1),
while all connections to the output (denoted as Wout

·
) are trained

(represented by dashed arrows in Fig. 1).
However, we discard the readout’s output feedback to the

reservoir because the problems in this work do not require a very
long-term memory. We also add a leak rate α as in Schrauwen,
Defour, Verstraeten, and Van (2007) to the state update equation
in order to make the reservoir timescale more flexible in matching
the timescale of the input. The changes can be seen in (3).

x(t + 1) = f
(
(1 − α)x(t) + α(Wres

resx(t) + Wres
inpu(t) + Wres

bias)
)
.

(3)

The output calculation gets simpler once we do not use the
direct connections from input to output neither the connections
from output to output:

y(t + 1) = Wout
res x(t + 1) + Wout

bias. (4)

The leak rate α can effectively tune the dynamics of the
reservoir. If the leak rate is chosen correctly, the reservoir dynamics
can be adjusted to match the timescale of the input flow, making
it possible to achieve enhanced performance (this can also be
achieved by resampling the input (Antonelo et al., 2007b; Jaeger,
Lukosevicius, & Popovici, 2007)). The leak rate can be chosen
empirically or alternatively by a parameter search over a set of leak
rates (parameter optimization). In this work, some experiments
use 3 pools of neurons in the reservoir with distinct leak rates
to achieve better performance. The method used for choosing
the leak rate(s) is presented in the following sections depending
on the considered task. Further investigation about timescales in
reservoirs and leaky integrator neurons can be found in Jaeger et al.
(2007); Schrauwen et al. (2007).

Each element of the connection matrix Wres
res is drawn from a

normal distribution with mean 0 and variance 1. The randomly
created Wres

res matrix is rescaled such that the system is stable
and the reservoir has the echo state property (i.e., it has a fading
memory (Jaeger, 2001b)). This can be accomplished by rescaling
the matrix so that the spectral radius |λmax| (the largest absolute
eigenvalue) of the linearized system is smaller than one (Jaeger,
2001b). Standard settings of |λmax| lie in a range between 0.7
and 0.98 (Jaeger, 2002). In this work we scale all reservoirs to a
spectral radius of |λmax| = 0.9 which is an arbitrarily chosen value
(the optimization of the spectral radius for each experiment was
not necessary because the changes in performance resulting from
using distinct spectral radius in the range [0.7, 0.98] are not clearly
visible).

Download English Version:

https://daneshyari.com/en/article/405643

Download Persian Version:

https://daneshyari.com/article/405643

Daneshyari.com

https://daneshyari.com/en/article/405643
https://daneshyari.com/article/405643
https://daneshyari.com

