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a b s t r a c t

In order to investigate the dynamics of a quantum weightless neuron node we feed its output back as
input. Due to the fact that controlled operators used in the neuron circuit usually generate entanglement,
we propose a mathematical method to extract the output at time t and build from that output the input
at time tþ1. As a result the time evolution is a real-valued nonlinear map with one real parameter. The
dynamics orbits are plotted showing acute sensitivity to initial conditions clearly exhibiting nonlinearity
by just looking at amplitude graphs. The fractal geometry and regions of convergence are discussed by
their Julia Set images and a new measure for model comparison is put forward.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

We are surrounded by complexity and non-linearity. They
emerge from the interactions of systems of either the same or
different kinds. Biological systems, weather phenomena, fluid
turbulence, radar backscatter from the sea surface, multipath in
mobile communication systems and control systems are examples
of complex systems. Research in dynamical systems has increased
in the past few years in order to understand these systems from
initial conditions and their asymptotic behaviour [1,2] with the
increase in power of the computer systems.

Poincaré studied the three-body problem when he discovered
that small perturbations can significantly affect the solution [3].
Concepts of phase portrait, Poincaré section, periodic orbit, return
map, bifurcation and fixed point were first introduced by Poincaré
as key descriptive aspects of dynamical systems. The first repre-
sentation of a chaotic attractor was provided by Edward Norton
Lorenz [4] in his attempt to understand weather forecasting
through numerical solutions in systems of differential equations.

Since then, important advances in computer graphics, fractals
and physics stimulated developments in the field of dynamical
systems. Many systems are understood in detail and have been
classified into categories according to their number of variables
and non-linearity [5].

Chaos in classical neural node [6,7] and networks [8] have been
reported in the literature. Evidences for the importance of chaos in

natural and artificial brain have been collected in a short survey by
Dave Gross in an electronically available article and in the refer-
ences there [9].

Closed quantum systems are linear (unitary) and the majority
of quantum computing literature deals with unitary evolution
despite the apparent difficulty of physically isolating quantum
systems [10]. In its turn open and measurement based systems can
be nonlinear [11–13]. Notwithstanding the traditional unitary
approach in quantum computing many studies have been carried
out employing nonlinear operators as gates [14]. We should
mention that the assumption that a fully quantised system evo-
lution is not sensitive to initial conditions is nevertheless not
unanimously accepted and sensitivity to initial conditions of
physically realisable fully quantised system has been con-
troversially reported in [15–19]. Measurement of quantum sys-
tems affects their dynamics and a non-linear behaviour can
emerge from the systems [20,12]. This nonlinear behaviour has
serious consequences in the dynamics of the systems bringing
chaotic patterns into consideration. Another line of work in this
field but not pursued here is the study of quantum systems that
are classically chaotic [21].

Some quantum algorithms are naturally iterative but com-
monly implemented in acyclic circuits subordinated by a classical
control. For example the Grover algorithm is the Θð ffiffiffi

n
p Þ repetition

of the Grover operator G [22]. Grover algorithm can be understood
as a set of quantum operators that, through a closed loop, reapp-
lies the output in the input, and the qubits are measured after Θ
ð ffiffiffi

n
p Þ times of iteration. Another physical system intrinsically
iterative is the control system of a quantum robot [23,24] inter-
acting with the environment for navigation or identification,
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where a quantum computer controls its operations. Despite not
being the concern here, when studying cyclic networks of quan-
tum gates is important to comprehend their relation to the halting
problem for Turing machines. In acyclic networks of gates it is
possible to determine if a algorithm will stop in contrast to cyclic
network of arbitrary complexity [25].

Feedback control in quantum computing usually can be per-
formed in the following way. A measurement is performed in
some quantum registers and the measurement result is used as
feedback. For instance, this strategy is used in [26]. In this paper,
we are interested in the alternative method proposed in [27],
where it is shown that quantum information in cyclic networks
can be beneficial when there is no measurement.

One can understand the dynamics of quantum cyclic networks
under the point of view of their operators, its phase analysis,
extracting eigenvalues and eigenstates [25]. Studies about weak
measurements back into the dynamics of ensemble of quantum
systems were presented by Lloyd and Slotine [28]. Conditional
dynamics of qubits iterated by a unitary operator coupled with a
measurement-induced nonlinearity is investigated by Kiss et al.
[20] and shown to be exponentially sensitive to initial condition
with positive Lyapunov demonstrating chaotic behaviour. The
nonlinear operator employed arises in quantum state purification
protocols where the nonlinear effects can guarantee the uncon-
ditional security of quantum cryptographic key distribution pro-
tocols. Quantum systems that interact with an environment
through measurement can be chaotic and nonlinear [29–33].

In this work we show a set of experiments and analysis of the
dynamics of the qRAM and ψ

�� �-RAM quantum weightless neuron
nodes which demonstrate high degree of sensitivity to the initial
conditions and chaotic behaviour. For that, we have used the
quantum operator of the respective node and a measurement
induced nonlinear step. After a short review of the basic notions of
Quantum Computing (Section 2), Dynamical Systems (Section 3),
Classical Weightless Neural Networks (Section 4) and Quantum
Weightless Neural Networks (Section 5) the proposed Models of
Dynamics (Section 6) is presented where is given a proof that the
target qubits after a generic controlled unitary operator cannot
always be decomposable as a product of two isolated quantum
states, i.e. they are entangled, Theorem 6.1. In Section 6.2.1 the
method for mathematically extract the amplitudes of a (possibly)
entangled states is presented while in Section 6.2.2 the experi-
ments are explained and analysed. A mathematical procedure to
recover the amplitudes of the output qubit is discussed. It is
observed high sensitivity to initial conditions and chaotic beha-
viour. After that, the results are analysed under the perspective of
Amplitude Graph and a quantitative study is introduced by a
measure of variation.

2. Quantum computing

One quantum bit (qubit) is a two-dimensional vector in the
complex vector space C2. Any qubit ψ

�� � can be written as a linear
combination of vectors (or states) of C2 canonical (or computa-
tional) basis 0j i ¼ ½1;0�T and 1j i ¼ ½0;1�T as viewed in the following
equation:

ψ
�� �¼ α 0j iþβ 1j i ð1Þ
where α and β are complex numbers and jαj 2þjβj 2 ¼ 1.

Tensor product � is used to represent quantum systems with
two or more qubits ij

�� �¼ i
�� � � j

�� �. Let A and B be two vector spaces
the tensor product of A and B, denoted by A � B, is the vector
space generated by the tensor product of all vectors aj i � b

�� �, with
aj iAA and b

�� �AB. Some states ψ
�� �AA � B cannot be written as a

product of states of its component systems A and B. States with

this property are called entangled states, for instance two entan-
gled qubits are the Bell states described in the following equation:

Φþ�� �¼ 00j iþ 11j iffiffiffi
2

p

Φ��� �¼ 00j i� 11j iffiffiffi
2

p

Ψ þ�� E
¼ 01j iþ 10j iffiffiffi

2
p

Ψ ��� �¼ 01j i� 10j iffiffiffi
2

p ð2Þ

Quantum operator U over n qubits is a unitary complex matrix
of order 2n � 2n. For example, some operators over 1 qubit are
Identity I, NOT X and Hadamard H, described below in Eqs. (3) and
(4) in matrix form and operator form. The combination of these
unitary operators forms a quantum circuit.

I¼ 1 0
0 1

� � I 0j i ¼ 0j i
I 1j i ¼ 1j i ; X¼ 0 1

1 0

� �X 0j i ¼ 1j i
X 1j i ¼ 0j i ð3Þ

H¼ 1ffiffiffi
2

p 1 1
1 �1

� �
;

H 0j i ¼ 1=
ffiffiffi
2

p
ð 0j iþ 1j iÞ

H 1j i ¼ 1=
ffiffiffi
2

p
ð 0j i� 1j iÞ ð4Þ

The Identity operator I generates the output exactly as the input; X
operator works as the classic NOT in the computational basis;
Hadamard H generates a superposition of states when applied in a
computational basis. The CNOT operator has 2 inputs and 2 out-
puts and flips the second one if the first is 1, as shown in Fig. 1.

The operators of quantum computation can be seen as special
kinds of linear transformations, as matrices that operates in a
vector basis. These special matrices are unitary and invertible [34].

3. Dynamical systems

Systems that have variation in time can be usually dealt with
mathematical structures having time as parameter. This time
iterative process is the subject of the field Dynamical Systems
where there are many tools and concepts that help designers and
engineers to investigate the temporal behaviour of systems. Some
of these concepts are presented in this section to help under-
standing and evaluating the models investigated in this work.

3.1. Orbits

There are many problems in Science in general and in Mathe-
matics in particular that involve iteration [5]. Iteration means to
repeat a process many times. In dynamics the process that is
repeated is the application of a function. The result of the appli-
cation of a function in previous time is used as input in the same
function in the current time.

Given x0AR, we define the orbit of x0 under F to be the
sequence of points x0; x1 ¼ Fðx0Þ; x2 ¼ Fðx1Þ;⋯xn ¼ Fðxn�1Þ⋯. The
point x0 is called “seed” of the orbit.

Sometimes it is useful to deal with a family of functions para-
metrised by a constant and so it is normal to represent it as Fc(z)
where c is a constant. As example, we have FcðzÞ ¼ z2þc, and
F2ðzÞ ¼ z2þ2, where c¼2. This representation helps us to cate-
gorise these families of functions.

3.2. Julia Set

Julia Set is the place where every chaotic behaviour of a com-
plex function occurs [35]. For example, the squaring map Q0ðzÞ ¼
z2 is chaotic in the unit circle, because if j zjo1 then jQn

0ðzÞj-0,
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