
Direct interval forecasting of wind speed using radial basis function
neural networks in a multi-objective optimization framework

Chi Zhang, Haikun Wei n, Liping Xie, Yu Shen, Kanjian Zhang
Key Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing 210096, PR China

a r t i c l e i n f o

Article history:
Received 5 October 2015
Received in revised form
10 March 2016
Accepted 28 March 2016
Communicated by Jiahu Qin
Available online 13 May 2016

Keywords:
Prediction interval
Radial basis function neural network
Multi-layer perceptron
Multi-objective genetic algorithm
Wind speed

a b s t r a c t

Point predictions of wind speed can hardly be reliable and accurate when the uncertainty level increases
in data. Prediction intervals (PIs) provide a solution to quantify the uncertainty associated with point
predictions. In this paper, we adopt radial basis function (RBF) neural networks to perform interval
forecasting of the future wind speed. A two-step method is proposed to determine the RBF connection
weights in a multi-objective optimization framework. In the first step, the centers of the RBF are
determined using the K-means clustering algorithm and the hidden-output weights of the RBF are pre-
trained using the least squares algorithm. In the second step, the hidden-output weights are further
adjusted by the non-dominated sorting genetic algorithm-II (NSGA-II), which aims at concurrently
minimizing the width and maximizing the coverage probability of the constructed intervals. We test the
performance of the proposed method on three real data sets, which are collected from different wind
farms in China. The experimental results indicate that the proposed method can provide higher quality
PIs than the conventional multi-layer perceptron (MLP) based methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Wind energy, which is a green and renewable energy, has been
under large scale development throughout the world over the past
decades [1]. It has shown the most rapid and consistent deploy-
ment of power generating capacities among various renewable
energy sources [2]. However, since wind power generation mainly
depends on wind speed, which has the characteristics of inter-
mittency and stochastic fluctuation, the integration of wind power
into power systems poses a number of challenges [3]. To ensure
safe and reliable operation of the power system, accurate wind
speed forecasting is needed [4].

In the literature, many methods have been proposed for the
forecasting of wind speed and most of them focus on point pre-
dictions. Depending on the mechanism utilized, there are two
mainstream methods for the point forecasting of wind speed:
physical and statistical methods [4]. The physical methods gen-
erate wind speed predictions by solving fluid dynamics and ther-
modynamics equations numerically [5]. Unlike physical methods,
statistical methods usually construct statistical models to predict
wind speed based on a number of historical data. Conventional
statistical models, especially the autoregressive moving average
(ARMA) models and their extended versions, have been widely

applied to the short-term wind speed point forecasting [6,7].
Recently, machine learning models, such as artificial neural net-
works (ANNs) [8,9] and support vector machines (SVMs) [10,11],
have been extensively adopted for wind speed point forecasting.
Furthermore, more recently, hybrid or combined models, which
combine different models together to take advantage of the
strengths of each component model, have also been proposed
[12,13].

From a practical point of view, it is risky for the decision-
makers to develop operational strategies in the power system
management purely according to the point forecasts. The accuracy
of point forecasts is often unsatisfactorily low due to the uncer-
tainty in real data sets. Thus, it is necessary to conduct interval
forecasting, which can provide information about associated
uncertainty in the point predictions. Some methods for wind
speed interval forecasting have been proposed recently. Jiang et al.
[14] proposed a Bayesian structural break model to predict the
future wind speed and its intervals. Song et al. [15] employed a
Markov-switching model to perform both point and interval
forecasting of the future wind speed. Qin et al. [16] proposed a
hybrid model based on the cuckoo search optimization and back-
propagation neural network to establish wind speed interval
forecasts.

Although there are only a few studies on wind speed interval
forecasting, the construction of PIs in other application areas has
been studied for many years. Traditional approaches for the con-
struction of PIs first generate the point predictions, and then
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calculate the corresponding PIs according to the quantile analysis
of errors with certain prior assumptions [17]. But since these
assumptions about the data may not hold in real-world data sets,
the constructed PIs will be unreliable and invalid. In recent years,
there has been a growing trend of directly generating interval
forecasts, without the need of prior assumptions [18,19]. The main
idea of these methods is first to represent the lower and upper
bounds of the intervals by some predictive model, and then opti-
mize the model coefficients according to the interval quality
assessment indices. In the literature, the MLP neural networks are
usually employed to generate the lower and upper bounds of PIs
[20]. Since the PI-based objective functions are complex, non-
linear and non-differentiable, traditional derivative-based algo-
rithms cannot be used for their minimization (or maximization).
The most commonly used methods for adjusting the MLP con-
nection weights are simulated annealing [18], particle swarm
optimization [21] and genetic algorithm [20,22].

However, when using MLP neural networks to perform interval
forecasting, the initial values of the connection weights are usually
generated randomly [20,23]. The effects of connection weight
initialization on the final constructed PIs are usually ignored.
Moreover, all the connection weights (i.e., both input-hidden and
hidden-output weights) are adjusted when training a MLP
according to the PI-based objective functions. These connection
weights constitute a very large search space, which may compli-
cate the optimization process. To simplify the optimization pro-
cess, it is interesting to investigate that whether it is possible to fix
part of the connection weights, and then just update the rest part
of the weights. Furthermore, another major class of feedforward
neural network models, RBF networks, which have been widely
and successfully used in many other areas, have not been applied
to the field of direct interval forecasting.

In view of the above-mentioned issues, RBF networks are
proposed in this paper to perform direct interval forecasting of the
future wind speed. Note that the assessment indices of PIs, which
are used to train the neural networks, are two competing indices
(coverage probability and the normalized average width). Since a
narrow interval will induce a low coverage probability, whereas
wide intervals may be required to obtain high coverage prob-
ability. A high quality interval is the one with high coverage
probability but small width. Although a combined measure index,
coverage width-based criteria [18], is proposed to simplify the
optimization problem, the PI construction in essence is a multi-
objective optimization problem [20,22]. Thus the interval fore-
casting of wind speed in this study is performed in a multi-
objective optimization framework [22,23]. That is, the RBF is
trained to concurrently minimize the width and maximize the
coverage probability of the constructed PIs. The multi-objective
genetic algorithm, NSGA-II, is used to adjust the RBF weights.
Moreover, in order to effectively initialize the connection weights
and reduce the dimensionality and complexity of search space, a
two-step method is proposed to determine the RBF weights.
Specifically, first, the centers of the RBF are determined in an
unsupervised manner and the hidden-output weights are pre-
trained using the squared-error objective function. Then the values
of the centers are fixed, and only the hidden-output weights are
further adjusted by NSGA-II using the PI-based objective functions.
In order to evaluate the proposed method, three real data sets of
hourly mean wind speed measurements are utilized in this paper.

The main contributions of the paper are listed below. (1) RBF
neural networks are proposed to perform direct interval fore-
casting in a multi-objective optimization framework, which is, to
the best of our knowledge, the first time to adopt RBF in this field.
(2) A two-step method is proposed to determine the RBF con-
nection weights. The first step is to pre-train the RBF using the
squared-error objective function and the second step is to further

tune the hidden-output weights with the PI-based objective
functions. (3) Demonstrated results from three case studies indi-
cate that the proposed approach generates higher quality PIs than
the conventional MLP-based methods.

The reminder of the paper is organized as follows. Section 2
introduces the problem formulation for direct interval forecasting.
Section 3 presents the proposed method for PI construction. The
experimental procedure and results are presented and discussed
in Section 4. Finally, conclusions are drawn in Section 5.

2. Problem formulation for direct interval forecasting

2.1. Direct interval forecasting

Traditional methods for the construction of PIs first generate
the point forecasts, and then calculate the corresponding PIs
according to the quantile analysis of errors with certain prior
assumptions [17,24]. As these assumptions may not hold in real-
world case studies, the constructed PIs will be unreliable and
invalid. In contrast, direct interval forecasting methods generate
the lower and upper bounds of PIs directly, without any assump-
tions about the error distributions. Specifically, given a set of
input-target pairs D¼ fðxi; tiÞ; i¼ 1;2;…;Ng, where ti is the i-th
target and xi denotes the relevant inputs, the lower and upper
bounds of PIs can be represented by some predictive model as

ylðxiÞ ¼ f ðxi;wlÞ ð1Þ

yuðxiÞ ¼ f ðxi;wuÞ ð2Þ
where ylðxiÞ and yuðxiÞ are the i-th lower and upper bounds,
respectively, and wl and wu are the corresponding parameter
vectors. A valid PI is composed of lower and upper bounds in
which a future unknown value of the target y0 (corresponding to
inputs x0) is expected to lie with a predetermined coverage
probability (confidence level) ð1�αÞ, i.e.,
Pðy0A ½ylðx0Þ; yuðx0Þ�Þ ¼ 1�α ð3Þ

In the literature, the most often used predictive models for
direct interval forecasting are MLP neural networks [18,20]. The
MLP used for direct interval forecasting usually consists of an input
layer, a hidden layer, and an output layer. The output layer is
composed of two outputs to directly generate the lower and upper
bounds of PIs. The symbolic MLP with two outputs for direct
interval forecasting is shown in Fig. 1.

For the MLP with p input neurons, the output value of one
hidden neuron zj is calculated as follows:

zj ¼ sigmoid wT
j x

� �
¼ 1
1þexp½�ðPp

k ¼ 1 wjkxkþwj0Þ�
; j¼ 1;2;…;h

ð4Þ
where h is the number of hidden neurons, wjk is the weight from
the k-th input neuron to the j-th hidden neuron, wj0 is the bias, xk
is the k-th component of the input vector. The outputs yu and yl of
the MLP are calculated taking the hidden neurons as their inputs

yu ¼ vTuz¼
Xh
m ¼ 1

vumzmþvu0 ð5Þ

yl ¼ vTl z¼
Xh
m ¼ 1

vlmzmþvl0 ð6Þ

where vum and vlm are the weights from the m-th hidden neuron
to the upper and lower bounds outputs, respectively, vu0 and vl0
are the biases.
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