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a b s t r a c t

This paper is mainly concerned on stability problem of Markovian jump neural networks with mode-
dependent two additive time-varying delays based on quadratic convex combination approach. The
jumping parameters are modeled as a continuous time, finite state Markov chain. By constructing a
suitable augmented Lyapunov–Krasovskii functional, utilizing the Jensen's inequality, the idea of second
order convex combination and the property of quadratic convex function, the sufficient conditions are
derived to guarantee that the proposed neural networks are globally asymptotically stable. Moreover,
these stability criteria are expressed in terms of linear matrix inequalities, which can be efficiently solved
via the standard numerical packages. Finally, the numerical examples are given to validate the less
conservatism and effectiveness of the theoretical results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

During the past decades, Neural Networks (NNs) have been
extensively studied and have also found many applications in
various fields, such as image processing, pattern recognition, sig-
nal processing, combinatorial optimization, power systems, asso-
ciative memory, and so on (for example [1–5]). All of these
applications tediously depend on the dynamical characteristics. So
the stability is an important property to many systems [6–11];
much effort has been done to study the stability problem of NNs
with time delays because the existence of time delays may cause
the system like instability and oscillation of NNs. So there exist
several results on stability of NNs with either constant or time-
varying delays [6–8,10,11,13–17,21–26].

Meanwhile, a new type of time-varying delay with two additive
components in the state of NNs are introduced in [12]. Such a
system may be encountered in many practical situations such as
remote control and networked control system. For example, in
networked controlled systems, signals transmitted from one point
to another may experience a few segments of networks, which can
possibly induce successive delays, one from the sensor to the
controller and the other from the controller to the actuator, having

different properties due to the variable network transmission
conditions. This implies that the system with additive time-
varying delays become more complicated and very interesting.
Therefore, a great number of researchers investigated the system
with additive time-varying delays (for example [13–17]). In [13],
the authors investigated the synchronization of singular Marko-
vian jumping complex dynamical networks with two additive
time-varying delay components using the pinning control. In [14],
the authors studied the problem of exponential synchronization of
complex dynamical networks with two additive time-varying
delay components and control packet loss using the stochastic
sampled-data control. The authors in [17] analyzed the stability
criteria for continuous time systems with additive time-varying
delays.

In the real world, the NNs may exhibit the network mode
jumping characteristic. Such jumping can be determined by the
Markov chain. Recently, NNs with Markovian jump parameters have
received much interest among researchers. This class of NNs is
recognized as the best system to model the phenomenon of infor-
mation latching and the abrupt phenomena, such as random fail-
ures or repairs of the components, sudden environmental changes,
changing subsystem interconnections, and so forth. To deal with
this situation, the authors in [18–20] considered the model of NNs
with Markovian jumping parameters, which are also called Mar-
kovian jump neural networks (MJNNs). Also these papers give the
extensive applications of such models in manufacturing systems,
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power systems, actuator saturation, and communication systems
and network-based control systems. Thus MJNNs is a hybrid system
with two components x(t) and r(t). Here x(t) is referred as the state,
which is described by a differential equation and the r(t) is referred
as the mode. In its operation, this class of systems will switch from
one mode to another mode in a randomway and it is also governed
by a continuous time Markov chain with a finite state space
S¼ f1;2;…;Ng. Therefore, it is important to study the dynamic
behaviors of neural networks with Markovian jumping parameters
and mode-dependent time-varying delays (for example [21–26]).

In [21], the authors discussed about the robust stochastic
convergence for an uncertain Markovian jumping Cohen–Gross-
berg NNs with mode-dependent time-varying delays. The delay
dependent stochastic stability criteria are studied in [23] for
MJNNs with mode-dependent time-varying delays and partially
known transition rates. In [25], the problem of asymptotic stability
of MJNNs with randomly occurring nonlinearities is investigated in
the mean square sense. In [26], the robust exponential stability of
Markovian jumping stochastic Cohen–Grossberg NNs with mode-
dependent probabilistic time-varying delays and continuously
distributed delays are studied by using the impulsive
perturbations.

Motivated by the above discussion, in this paper, we investigate
the global asymptotic stability for MJNNs with mode-dependent
two additive time-varying delays. At first, we construct a
new augmented LKF terms like as

R t
t� τ1

ηT1ðt; sÞH1η1ðt; sÞds,R t
t�τ1

ðτ1�tþsÞηT2ðsÞH2η2ðsÞds,
R t
t�τ1

ðτ1�tþsÞ2 _xT ðsÞH3 _xðsÞds. Here,
the quadratic terms ηT2ðsÞH2η2ðsÞ and _xT ðsÞH3 _xðsÞds are multiplied
by the scalar function ðτ1�tþsÞ and ðτ1�tþsÞ2 respectively. By
using Jensen's inequality and some new integral inequalities to
solve these LKFs. Also, we will claim that the function

ζT ðtÞ½Ω0þτ1iðtÞΩ1þΩd�ζðtÞo0; 8τ1iðtÞA ½0; τ1�
is a quadratic convex combination on τ1iðtÞ. Then the sufficient
conditions are employed in terms of LMIs which ensuring the
globally asymptotically stable of the proposed NNs. Finally, the
effectiveness of theoretical results is validated by the numerical
examples. However, to the best of our knowledge, until now there
are no results on the stability problem of MJNNs with mode-
dependent two additive time-varying delays based on the quad-
ratic convex combination approach.

The outline of this paper is organized as follows: the NNs
model is introduced and some necessary lemmas are given in
Section 2. Section 3 includes the stability problem of MJNNs with
mode-dependent two additive time-varying delays based on
quadratic convex combination approach. Section 4 provides
numerical examples to illustrate the effectiveness of the theore-
tical results. Finally, the conclusion is given in Section 5. To ease
the analysis, let us provide the following notations.

Notations: Throughout this paper, Rn denotes the n-dimen-
sional Euclidean space. Sym(M) is defined as SymðMÞ ¼MþMT . The
superscript T denotes the transposition. The notation MZ0
(similarly, Mr0) denotes that M is a positive semi-definite matrix
(similarly, negative semi-definite matrix). The identity and zero
matrices of appropriate dimensions are denoted by I and 0,
respectively. xt≔fxðtþsÞ : sA ½�τ ;0�g. The notation n in a block
matrix always represents the symmetric terms.

2. Problem formulation

Let frðtÞ; tZ0g is a right-continuous Markov chain on a comp-
lete probability space ðΩ;F ; PÞ taking values in a finite space

S¼ 1;2;…;Nf g with operator Γ ¼ ðπijÞN�N given by

PfrðtþΔtÞ ¼ jj rðtÞ ¼ ig ¼
πijΔtþoðΔtÞ; ia j;
1þπiiΔtþoðΔtÞ; i¼ j;

(

whereΔt40 and limΔt-0oðΔtÞ=Δt ¼ 0; πijZ0 is the transition rate
from i to j, if ia j while πii ¼ �PN

j ¼ 1;ja i πij.

In this paper, we consider the following MJNNs with mode-
dependent additive time-varying delays:

_xðtÞ ¼ �AðrðtÞÞxðtÞþBðrðtÞÞf ðxðtÞÞþCðrðtÞÞf ðxðt�τ1ðt; rðtÞÞ
�τ2ðt; rðtÞÞÞÞ: ð1Þ

In the forthcoming, for simplicity, let rðtÞ ¼ i. Then AðrðtÞÞ ¼ Ai; Bðr
ðtÞÞ ¼ Bi; CðrðtÞÞ ¼ Ci; τ1ðrðtÞÞ ¼ τ1i; τ2ðrðtÞÞ ¼ τ2i; with this system
(1) can be rewritten as

_xðtÞ ¼ �AixðtÞþBif ðxðtÞÞþCif ðxðt�τ1iðtÞ�τ2iðtÞÞÞ
xðtÞ ¼ϕðtÞ tA ½�τ ;0�;

(
ð2Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; …; xnðtÞ�T ARn is the neural state vector,
Aiði¼ 1;2;…;NÞ is a positive diagonal matrix, Bi and Ci are the
connection weight matrix and delayed connection weight matrix
respectively. f ðxðtÞÞ ¼ ½f 1ðx1ðtÞÞ; f 2ðx2ðtÞÞ;…; f nðxnðtÞÞ�T ARn denotes
the neuron activation functions. τ1iðtÞ, τ2iðtÞ represents two dif-
ferent mode-dependent time-varying delays, which satisfies,

0rτ1iðtÞrτ1i; 0rτ2iðtÞrτ2i; _τ1iðtÞrμ1i; _τ2iðtÞrμ2i:

Let τ1 ¼maxiASfτ1ig; τ2 ¼maxiASfτ2ig: Here τ1i; τ2i; μ1i; μ2i are
known constants. ϕðtÞ is an initial condition with tA ½�τ ;0�;where
τ ¼ τ1 þ τ2. Throughout this paper, we make the following
assumption:

Assumption 2.1. Each neuron activation function f lð�Þ; l¼ 1;2;…;

n; in system (2), satisfies the following condition:

klr
f lðuÞ� f lðvÞ

u�v
rkl;

where f lð0Þ ¼ 0, 8u; vAR; uav; and kl; kl are real constants,
l¼ 1;2;…;n.

The following technical well-known propositions will be useful
in the succeeding discussion.

Lemma 2.2 (Rakkiyappan et al. [26] (Schur complement)). Given
constant matrices A, B and C with appropriate dimensions, where AT

¼ A and BT ¼ B40 then AþCTB�1Co0 if and only if

A CT

n �B

" #
o0; ðorÞ �B C

n A

� �
o0:

Lemma 2.3 (Dharani et al. [30]). For any constant matrix XARn�n;

X ¼ XT 40; two scalars a and b, aob such that the integrations
concerned are well defined, then the following inequalities holds:

�ðb�aÞ2
2

Z b

a

Z b

θ
xT ðsÞXxðsÞdsdθr�

Z b

a

Z b

θ
xðsÞdsdθ

 !T

X
Z b

a

Z b

θ
xðsÞdsdθ

 !
; �ðb�aÞ

Z b

a
xT ðsÞXxðsÞdsr�

Z b

a
xðsÞds

 !T

X
Z b

a
xðsÞds

 !
:

Lemma 2.4 (Zhang et al. [35]). Let W40, and ωðsÞ be an appro-
priate dimensional vector. Then, we have the following facts for any
scalar function βðsÞZ0; 8sA ½t1; t2� :

ð1Þ�
Z t2

t1
ωT ðsÞWωðsÞdsr ðt2�t1ÞζTFT1W �1F1ζþ2ζTFT1

Z t2

t1
ωðsÞds;
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