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a b s t r a c t

Low-rank tensor completion (LRTC) has been applied in many real-world problems. But most of the
existing LRTC methods recover a tensor on a single dataset with the low-rank assumption, suffering from
a low accuracy due to the complicated structures of higher-order data. To address this issue, we propose
a novel tensor completion method for two correlated tensor datasets obtained from different sources. We
first introduce the correlated tensors with multiple shared modes via tensor canonical correlation ana-
lysis (TCCA), and reveal the relationship between the transformation matrices of TCCA and the Tucker
decomposition. Then we develop a Tucker-n decomposition method with n invariant modes to capture
the latent structures of incomplete tensors, in which sufficient discriminative information for TCCA can
be flexibly maintained by varying the number of invariant modes. Finally, we combine the Tucker-n
decomposition method for LRTC with the correlation of TCCA as a regularizer to improve the completion
performance, and derive relative error bounds for our LRTC approach to guarantee the recovery accuracy.
Experimental results on synthetic and real data demonstrate the accuracy and efficiency of the proposed
approach, as well as the benefit of multiple shared modes.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Tensors, as generalizations of vectors and matrices, provide a
natural and efficient representation of multi-dimensional data
including visual, spatiotemporal and neuroimaging data [1–4].
Meanwhile, tensor data with missing entries arise in many prac-
tical problems due to loss of information, errors in the data col-
lection process, and costly experiments [5]. The missing entries
recovery depends on the relationship between the observed
entries and the unknown ones. Since tensor decompositions give a
concise representation of the underlying structures and correla-
tions of the tensor data, they have been used as common tools for
recovering incomplete tensor [4,6–8].

Recently, low-rank matrix completion has been actively studied
[9,10]. The nuclear norm is usually used to approximate the rank
function of matrices and the resulting optimization problems are
convex. Although there are obstacles to generalize the methods for
matrix completion to tensor recovery since most tensor problems
are NP-hard [11], several tensor completion problems have been
formulated using extensions of nuclear norm [8]. In [4], tensor
completion problem based on a novel definition of the nuclear

norm was presented and three convex optimization algorithms,
SiLRTC, FaLRTC, and HaLRTC, were proposed to tackle the problem.
Besides, many algorithms have been designed to alleviate the
estimation bias of the tensor nuclear norm based formulation for
low-rank tensor completion (LRTC) [12,13]. Several LRTC methods
with low-rank assumption have also been successfully applied to
electroencephalo-graph (EEG) data analysis and natural images
with less computational cost [14,15]. The CP decomposition was
used to formulate a weighted least squares problem for LRTC, in
which the tensor rank was supposed known [6]. Another well-
known tensor decomposition, Tucker decomposition, was also
introduced to formulate the Tucker weighted optimization
method for LRTC, in which the rank of input tensor can be over-
estimated or underestimated [7].

However, only one tensor dataset was considered in the most
existing LRTC methods, while different correlated datasets are
usually obtained simultaneous from multiple sources of the same
object. In the case of tensor datasets from multiple sources, tensor
decompositions have been introduced to solve multi-relational
learning and data fusion [16,17]. Two regularization approaches
for tensor completion were proposed using graph Laplacians
induced from the relationships among datasets [18]. Recently,
some multi-tensor completion methods were proposed for esti-
mating missing values in video data [19,20].

For multiple datasets, canonical correlation analysis (CCA) is a
powerful unsupervised tool for discovering relationships between
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two sources of information [21]. Under the multilinear subspace
learning (MSL) framework, the CCA methods were extended to the
multilinear case via tensor-to-vector projection [22,23]. Another
tensor CCA (TCCA) was proposed for third-order tensors with
shared modes [1]. Recently, TCCA has been widely used in the
context of hand gesture recognition, action categorization and
functional magnetic resonance imaging (fMRI) [24,25], in which
the correlations of high-order data from different sources were
measured by TCCA. Thus, in addition to the low-rank assumption,
we assume that the tensors from two different sources have the
correlation, and introduce more prior information for tensor
completion by a TCCA regularization term.

In this paper, we will present a novel method to complete
tensor data using TCCA with multiple shared modes, in which
incomplete tensor and its correlated tensor are considered as
inputs. In other words, we find two sets of orthogonal canonical
transformations with n invariant modes, by which two tensor
datasets are projected into low-dimensional spaces to maximize
their correlation. Then, the optimal orthogonal canonical trans-
formations can be used to recover the incomplete tensor data.

The rest of the paper is organized as follows. In Section 2, we
provide the notations and basic facts about tensor algebra, as well
as a concise introduction to TCCA and LRTC. A method to recover
incomplete tensors via TCCA is proposed in Section 3. Section 4
presents the performance of our algorithm on synthetic and real
tensor data. We end in Section 5 with conclusion.

2. Notations and background

This section introduces some notations and definitions used
throughout the paper and reviews the related works in TCCA
and LRTC.

2.1. Tensor algebra

For convenience, we denote vectors as boldface lowercase let-
ters, i.e., x, and matrices as boldface capital letters, i.e., X . N-th
order tensors, which we denote by calligraphic letters, e.g., X , are
higher-order generalizations of vectors (first-order tensors) and
matrices (second-order tensors). More generally, the order N of a
tensor is the number of modes. Entries of a tensor are denoted by
lowercase letters with subscripts, i.e., the ði1; i2;…; iNÞ entry of an
N-th order tensor XARI1�I2�⋯�IN is denoted by xi1 ;i2 ;…;iN .

Definition 2.1 (n-Mode unfolding and n-rank). An n-mode vector
of XARI1�I2�⋯�IN is an element of RIn obtained from X by varying
the index in and keeping the other indices fixed. The n-mode
unfolding or matricization of a tensor XARI1�I2�⋯�IN is the matrix
X ðnÞARIn�Ln whose columns are the n-mode vectors, where

Ln ¼ ∏
kA f1;2;…;n�1;nþ1;…;Ng

Ik:

Then, the n-rank of X , denoted ranknðX Þ, is the rank of X ðnÞ. If let
rn ¼ ranknðX Þ for n¼ 1;2;…;N, we can say that X is a
rank-ðr1; r2;…; rnÞ tensor.

Definition 2.2 (n-Mode product). The n-mode product of a tensor
XARI1�I2�⋯�IN with a matrix UARJ�In is denoted by X�nU with
size I1 � I2 �⋯� In�1 � J � Inþ1 �⋯� IN , defined by
ðX�nUÞðnÞ ¼UX ðnÞ.

Definition 2.3 (Tucker decomposition). The Tucker decomposition
decomposes a tensor XARI1�I2�⋯�IN into a core tensor GA
RJ1�J2�⋯�JN multiplied by a matrix along each mode:

X ¼ G�1U1�2U2�3⋯�NUN ;

where fUng are factor matrices (usually orthogonal). Additionally,
Jk ¼ rk for k¼ 1;2;…;N if X is rank-ðr1; r2;…; rnÞ.

Definition 2.4 (Frobenius norm). The Frobenius norm of tensor X
ARI1�I2�⋯�IN is denoted by JX JF and defined as

JX J2F ¼ 〈X ;X 〉¼
XI1
i1 ¼ 1

XI2
i2 ¼ 1

⋯
XIN
iN ¼ 1

x2i1 ;i2 ;…;iN :

2.2. Tensor canonical correlation analysis (TCCA)

In [1,25], for two third-order tensors data X1;X2ARI�J�K , I
single-shared-mode TCCA for third-order tensor is described as
follows with respect to the canonical correlation ρ:

ρ¼ max
U ð1Þ

j ;U ð1Þ
k
;U ð2Þ

j ;U ð2Þ
k

〈X1�jU
ð1Þ >
j �kU

ð1Þ >
k ;X2�jU

ð2Þ >
j �kU

ð2Þ >
k 〉;

where U ð1Þ
j ;U ð1Þ

k ;U ð2Þ
j ;U ð2Þ

k are orthogonal sets of canonical
transformations.

Furthermore, IJ joint-shared-mode TCCA [1,25] for third-order
tensor X1;X2ARI�J�K is described as follows:

ρ¼ max
U ð1Þ

k
;U ð2Þ

k

〈X1�kU
ð1Þ >
k ;X2�kU

ð2Þ >
k 〉;

where orthogonal canonical transformations U ð1Þ
k ;U ð2Þ

k are found to
maximize the inner product of the canonical objects.

2.3. Low-rank tensor completion (LRTC)

In Filipović et al.'s work, the Tucker weighted optimization
(Tucker–Wopt) for low-rank tensor completion is given as follows
which can be solved by nonlinear conjugate gradient method [7]:

min
G;fUng

JW � ðX�G�1U1�2⋯�NUNÞJ2F ;

where the symbol � denotes the Hadamard (elementwise) pro-
duct and W is a nonnegative weight tensor with the same size as
XARI1�I2�⋯�IN :

wi1 ;i2 ;…;iN ¼
1 if xi1 ;i2 ;…;iN AΩ;

0 if xi1 ;i2 ;…;iN AΩC ;

(

where Ω denotes the set of indexes of known elements and ΩC

denotes the complement of Ω.

3. Low-rank tensor completion on correlated data

In this section, we will describe our low-rank tensor comple-
tion method with high-order canonical correlation analysis in
detail, in which two tensor datasets are considered as inputs.

3.1. Multi-shared-modes TCCA (MCCA)

In order to make use of the correlation of two tensor datasets,
we firstly generalize the TCCA of two third-order tensors into that
of two high-order tensors with multiple shared modes. Then,
MCCA is given as follows in which input X1;X2 are described as
high-order tensors with M shared modes:

ρ¼max
fU ðkÞ

n g
〈X1�Mþ1U

ð1Þ >
Mþ1⋯�NU

ð1Þ >
N ; X2�Mþ1U

ð2Þ >
Mþ1⋯�NU

ð2Þ >
N 〉; ð1Þ

where

X1ARI1�I2�⋯�IM�IM þ 1�⋯�IN ; X2ARI1�I2�⋯�IM�JM þ 1�⋯�JN ;

and orthogonal sets of canonical transformations are denoted as

U ð1Þ
n ¼ ðu1

1n;u
2
1n;…;urn

1nÞARIn�rn ;
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