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a b s t r a c t

Nonnegative matrix factorization (NMF) is a promising algorithm for dimensionality reduction and local
feature extraction. However, NMF is a linear and unsupervised method. The performance of NMF would
be degraded when dealing with the complicated nonlinear distributed data, such as face images with
variations of pose, illumination and facial expression. Also, the available labels could potentially improve
the discriminant power of NMF. To overcome the aforementioned limitations of NMF, this paper proposes
a novel supervised and nonlinear approach to enhance the classification power of NMF. By mapping the
input data into a reproducing kernel Hilbert space (RKHS), we can discover the nonlinear relations
between the data. This is known as the kernel methods. At the same time, we make use of discriminant
analysis to force the within-class scatter small and between-class scatter large in the RKHS. It theore-
tically shows that the proposed approach can guarantee the non-negativity of the decomposed com-
ponents and the objective function is non-increasing under the update rules. The proposed method is
applied to face recognition. Compared with some state-of-the-art algorithms, experimental results
demonstrate the superior performance of our method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, face recognition (FR) techniques have
attracted much attention in the community of pattern classifica-
tion and computer vision. The crucial stage of FR lies in the facial
feature extraction. To achieve the goal, one should model a group
of facial basis images as projection directions and use their coef-
ficients (features) to represent original facial data. The popular
linear methods for feature extraction are principal component
analysis (PCA) [1], linear discriminant analysis (LDA) [2] and
nonnegative matrix factorization (NMF) [3,4]. PCA aims to project
the primitive samples into a low dimensional feature space such
that the projected samples have largest variance. The PCA basis
images, also called eigenfaces in FR, are the leading eigenvectors of
the covariance matrix of the training samples. LDA focuses on
extracting features for classification purpose. It maps the samples
into a linear subspace by maximizing the ratio of the inter-class
distance to the intra-class distance. In face recognition, LDA basis
images are known as Fisherfaces. Different from PCA and LDA
approaches, NMF does not allow subtraction operations because
NMF is implemented under nonnegative constraints. The objective

of NMF is to approximatively decompose the nonnegative data
matrix into two matrices with nonnegative elements, namely basis
matrix and coefficient feature matrix. As we know, the pixels of
facial image are nonnegative as well, so NMF can be used to learn
part-based representation of the facial data. It is interesting that
the parts of face represented by the basis matrix are the nose, eyes,
mouth, etc. Conversely, these parts can be non-negatively com-
bined to reconstruct the whole facial image. In recent years, NMF,
as an unsupervised feature extraction method, has been success-
fully applied to face recognition. A large number of NMF variants
have been proposed [5–17]. For example, literature [16] incorpo-
rated the label information and local geometric structure into the
factors of NMF. Zheng et al. learned the structured sparse basis
images of NMF by using the pixel dispersion penalty [17].

Nevertheless, owing to the variations of illumination, facial
expression, pose and so on, the distribution of facial images is very
complicated and thus nonlinear in facial data space. This means
that the performances of linear methods, such as PCA, LDA and
NMF, will be degraded for nonlinear classification tasks. A com-
monly used method to tackle nonlinear problem is the kernel
method, which has shown to be an effective technique for non-
linear feature extraction [18]. The basic idea of kernel method is to
find a nonlinear mapping φ, from original pattern space to a
reproducing kernel Hilbert space (RKHS) F , such that the mapped
samples are linearly separated, and then execute the linear
methods in RKHS. However, the dimensionality of F is usually
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very large, and may even be infinite. Also, how to obtain the
nonlinear mapping is still a problem. Fortunately, these problems
can be overcome using kernel trick. It is based on the fact that the
kernel based algorithms just have relationship with the inner
product 〈φðxÞ;φðyÞ〉F which can be replaced by a kernel function k,
that is,

kðx; yÞ ¼ 〈φðxÞ;φðyÞ〉F ; ð1Þ
where x and y are in the input space. This indicates that the
nonlinear mapping is implicitly applied in RKHS. At present, a
number of publications have extended the linear methods to the
kernel counterparts, such as kernel PCA (KPCA) [19], kernel LDA
(KLDA) [20] and kernel NMF (KNMF) [21]. These kernel based
findings generally surpass their linear versions in face recognition.

The existing kernel based NMF approaches mainly attempt to
discover the nonnegative pre-images in the input space and the
nonnegative coefficient matrix such that the mapped samples
could be expressed as linear combinations of the mapped pre-
images under the non-negative constraints. Because the mapped
samples are unknown in RKHS, it is infeasible to factorize the
mapped samples matrix directly. To avoid this obstacle, Buciu et al.
proposed a polynomial kernel NMF (PNMF) approach using the
cost function with Frobenius norm [21], which can be easily
expressed via a kernel function. To ensure that the factorization is
nonnegative, PNMF only adopts the polynomial kernel, but fails to
use other kernel functions. Another limitation of PNMF is that the
limit point produced by the optimization algorithm cannot guar-
antee to be a stationary point. To remedy the above limitations of
PNMF, the projected gradient kernel NMF (PGKNMF) was pro-
posed to use arbitrary kernel functions [22]. Moreover, the limit
point is ensured to be a stationary point of the optimization pro-
cedure. In order to find the pre-images of basis, both PNMF and
PGKNMF needs to get back from the feature space to the input
space. This is the curse of pre-image problem as raised in [23]. The
authors in [23] derived the pre-images directly in the input space.
It is noteworthy that [24,25] found the basis in the feature space,
not the pre-images in the input space. By restricting the basis lying
in the linear space spanned by the mapped training data, [24]
obtains a new multiplicative update rules expressed with kernel
matrix. By forcing the non-negativity of mapped training data in
the RKHS, [25] performs NMF in the feature space directly. It is
shown in [25] that the non-negativity of mapped training data
could produce sparser basis, thus is more suitable for face recog-
nition. Although these variants of KNMF [21–25] are able to model
the nonlinear structure of the samples, one unappealing aspect of
the current KNMF methods is that they do not utilize the class
label information of the training data and thus are unsupervised
learning methods for nonlinear feature extraction. We know that
the supervised method usually has more discriminant power than
the unsupervised counterpart. Therefore, it would be better for
KNMF to take full advantage of the class label information.

In summary, there are two major issues in NMF including
nonlinear problem and supervised learning problem. These pro-
blems will negatively affect the performance of NMF. In order to
enhance the discriminant power of NMF method, we propose a
novel supervised kernel NMF (SKNMF) approach in this paper by
making use of the kernel theory and discriminant analysis method.
Firstly, a nonlinear mapping is implicitly exploited to embed the
samples into a RKHS, and then a nonlinear objective function is
established to find nonnegative pre-images and nonnegative
coefficient matrix such that the mapped samples are expressed as
the non-negatively linear combinations of the mapped pre-
images. To utilize the class label information, two quantities,
namely within-class scatter and total-class scatter, are incorpo-
rated into the objective function as well. We minimize the objec-
tive function using gradient descent method and derive out

SKNMF update formulae. It theoretically proves that our objective
function is non-increasing under SKNMF update rules. This implies
the convergence of our algorithm. The proposed SKNMF method is
finally tested on face databases. The experimental results show
that our SKNMF approach surpasses some state of the art
approaches.

The rest of this paper is organized as follows: Section 2 will briefly
introduce some related works, such as NMF and KNMF with poly-
nomial kernel. Section 3 proposes our SKNMF and gives theoretic
analysis. Experimental comparisons are reported in Section 4. Finally,
Section 5 draws the conclusions.

2. Related works

This section describes NMF [3,4] and KNMF [21] algorithms
briefly. Let m be the dimension of original feature space and xiA
Rm

þ ði¼ 1;2;…;nÞ be the training samples with nonnegative
entries. The nonnegative training sample matrix X is denoted by
X ¼ ½x1; x2;…; xn�ARm�n

þ . The ith row and jth column element of a
matrix A is denoted as ½A�ij.

2.1. NMF

NMF aims to approximately factorize the training sample
matrix X into two nonnegative matrices WARm�r

þ and HARr�n
þ , i.e.

X �WH. It indicates that each sample can be expressed as a linear
combination of the columns of W, namely xj �Whj, where hj is the
jth column of H. Matrices W and H are called basis matrix and
coefficient matrix, respectively. In general, NMF needs to minimize
the following objective function:

FNMF ðW ;HÞ ¼ 1
2
‖X�WH‖2F ;

subject to the constraints WZ01 and HZ0. J � JF is the Frobenius
norm of a matrix.

The optimization problem can be solved using gradient descent
method. Based on the objective function with Frobenius norm,
NMF has the following update rules:

Hðtþ1Þ ¼HðtÞ � ðW ðtÞTXÞ⊘ðW ðtÞTW ðtÞHðtÞÞ; ð2Þ

W ðtþ1Þ ¼W ðtÞ � ðXHðtÞT Þ⊘ðW ðtÞHðtÞHðtÞT Þ; ð3Þ

W ðtþ1Þ ¼W ðtþ1Þ⊘S; ð4Þ
where � and ⊘ denote element-wise multiplication and division,
respectively, ½S�jr ¼

Pm
i ¼ 1 ½W �ir . The formula (4) constrains the col-

umns of W to sum to 1. It has been shown in [3] that the objective
function is non-increasing under the update rules (2)–(4).

2.2. Kernel NMF

Kernel NMF (KNMF) is also known as nonlinear NMF. The basic
idea of KNMF is that it firstly maps nonnegative data into a RKHS
F via a nonlinear mapping φ : Rm

þ⟼F , and then finds the non-
negative features and pre-images such that the mapped samples
can be approximately expressed as a linear combination of the
mapped pre-images in F , namely

φðxjÞ �
Xr
i ¼ 1

hijφðwiÞ;

where the feature hij and pre-image wi are nonnegative. If we
denote W ¼ ½w1;w2;…;wr�ARm�r

þ , φðXÞ ¼ ½φðx1Þ; φðx2Þ; …;φðxnÞ�,

1 WZ0 means that all elements of W are nonnegative.
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