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a b s t r a c t

This paper is concerned with the input-to-state stability problem of a class of neutral stochastic neural
networks. The stochastic neural networks that we consider contain both neutral terms and mixed delays.
By utilizing the Lyapunov–Krasovskii functional method, stochastic analysis techniques and It ô's for-
mula, some sufficient conditions are derived to ensure the mean-square exponential input-to-state
stability of the addressed system. Two numerical examples and their simulations are given to illustrate
the effectiveness of the derived results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, neural networks have been extensively
investigated owing to their promising applications in many areas
such as associative memory, image processing, pattern recogni-
tion, signal processing, and combinatorial optimization [1–6].
These attained applications depend on the stability of equili-
brium points of neural networks since stability is the precondi-
tion that a system can work normally. In the real world, noise
disturbance is ubiquitous. Just as pointed out by Haykin [7], the
synaptic transmission can be viewed as a noisy process brought
on by random fluctuations from the release of neurotransmitters
and other probabilistic causes in nervous systems. In general,
Gaussian noise has been employed to describe the noise
disturbance arising in neural networks, and its existence can
cause instability and poor performances. Consequently, it is of
great significance to investigate the stability of stochastic neural
networks with Gaussian noise.

On the other hand, time delays are frequently occurring in
hardware implementations because of the finite switching speed of
amplifiers or information processing, which can cause complex
dynamic behaviors such as oscillations, divergence and even

instability in designing neural network systems. Hence, the stability
analysis of stochastic neural networks with time delays has become
an interesting research topic [8–16]. As we know, the existing works
on delayed neural networks can be generally classified into four
categories: constant delays, time-varying delays, distributed delays
and mixed delays. It has been recognized that the variable time
delays and distributed delays have more practical significance than
the constant delays. Besides, due to the complicated dynamic
properties of the neural cells, there exist many neural network
models such as distributed networks, chemical reactors, and heat
exchanges that cannot characterize the properties of a neural
reaction process precisely [17]. It is natural and important that the
systems will contain some information about the derivative of the
past state. In order to describe the dynamics for complex responses,
such systems have been referred as neutral-type systems, and they
have the state derivative with delays which are called neutral
delays. Under this circumstance, a class of stochastic neural net-
works with neutral delays has been introduced. In recent years, the
stability analysis problem of stochastic time-varying neural net-
works with neutral terms has received considerable attention [18–
22].

In addition, dynamical behaviors of neural networks are often
affected by control inputs. In order to check robust stability, the
input-to-state stability (ISS) was first introduced by Sontag [23,24],
which was more general than the traditional stability since the ISS
properties imply not only that the unperturbed system is asymp-
totically stable in the Lyapunov sense but also that its behavior
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remains bounded when its inputs are bounded. During the last
two decades, ISS has become a central foundation of modern
nonlinear feedback and design due to its usefulness. It is also
considered as a key tool in systems with recursive design, coprime
factorizations, small gain theory, and a connection between the
input–output (or external) stability and state (or internal) stability
[25]. Meanwhile, the ISS analysis also opens a new path for
application of dynamic neural networks to nonlinear control.
Recently, there have been a large number of works on the input-
to-state stability analysis of neural networks. By using Lyapunov
functional method, Sanchez and Perez [26] obtained nonlinear
feedback matrix norm conditions to guarantee ISS which also
ensured global asymptotic stability. Guo [27] further gave two new
results on input-to-state convergence of recurrent neural net-
works with variable inputs. According to a tuning algorithm, Yu
and Li [28] examined some stability properties like asymptotic
stability, input-to-state stability and bounded input-bounded sta-
bility of neural networks. For switched Hopfield neural networks
with time delays under parametric uncertainty, Ahn [29] proposed
a new passive weight learning law and the input-to-state stability
was also considered. Based on the results in [26], Zhu and Shen
[30] established two algebraic criteria for exponential input-to-
state stability of recurrent neural networks. More recently, with
the help of the Lyapunov–Krasovskii functional, stochastic analysis
theory and It ô's formula, Zhu and Cao [31,32] introduced and
studied a new stability criterion: the mean-square exponential
input-to-state stability of stochastic recurrent neural networks and
Cohen–Grossberg neural networks. Lou and Ye [33] investigated
the input-to-state stability problem of a class of memristor-based
neural networks with stochastic effects and time-varying delays
via non-smooth analysis and stochastic techniques. Furthermore,
by means of Razumikhin technique and new Halanay differential
inequalities, Zhou et al. [34] considered the mean-square expo-
nential input-to-state stability of a class of non-autonomous sto-
chastic Cohen–Grossberg neural networks. Although the tradi-
tional stability of neutral stochastic systems is examined, up to
now, there has been no results on the input-to-state stability
analysis for neutral stochastic neural networks with mixed delays.

Inspired by the above discussion, we will investigate the mean-
square exponential input-to-state stability of neutral stochastic
neural networks with mixed delays in this paper. The contribu-
tions of our work lie in three aspects. First, the structure of the
proposed model is more general than the ones in [30–34] since
many factors such as neutral terms, mixed delays and stochastic
perturbations are considered. Second, the existing works mainly
focused on the asymptotic stability in the mean square, expo-
nential stability in the mean-square and almost surely exponential
stability of neutral stochastic systems with mixed delays, but the
mean-square input-to-state stability has not been investigated,
which differentiates our work from the previous works. Third, by
utilizing the Lyapunov–Krasovskii functional method, stochastic

analysis techniques and It ô's formula, some novel criteria on
mean-square exponential input-to-state stability are established.
The Lyapunov–Krasovskii functional in the paper is more complex
comparing with the ones in [30–34] since it covers neutral terms
and double integrals. Meanwhile our results are computationally
efficient as the derived sufficient conditions can be easily checked.

The remainder of this paper is organized as follows. In
Section 2, the model of neutral stochastic neural networks with
mixed delays is introduced, and some assumptions and definitions
needed in this paper are presented. By utilizing the Lyapunov–
Karasovskii functional approach and stochastic analysis techni-
ques, some sufficient conditions are derived to ensure the mean-
square exponential input-to-state stability of the addressed system
in Section 3. In Section 4, two numerical examples are given to
demonstrate the effectiveness of the obtained results. Finally,
conclusions are drawn in Section 5.

2. Model description and problem formulation

Throughout this paper, unless otherwise specified, we let ðΩ;

F ; fF gtZ0;PÞ be a complete probability space with a filtration
fF gtZ0. Let ωðtÞ be an n-dimensional Brownian motion defined on
the probability space satisfying the usual conditions (i.e., it is
increasing and right continuous while F 0 contains all P-null sets).
R denotes the set of real number, and RZ0 denotes the set of
positive real number. Rn represents the n-dimensional space. The
superscript “T” denotes the transpose of a matrix or vector. Let
τ40 and Cð½�τ ;0�;RnÞ denote the family of continue functions φ
from ½�τ ;0� to Rn with the norm JφJ ¼ sup�τr sr0 jφðsÞj , where
j � j is the Euclidean norm in Rn. L2F 0

ð½�τ ;0�;RnÞ denotes the family
of all F 0-measurable Cð½�τ ;0�;RnÞ-valued random variables ξ¼ f
ξðθÞ : �τrθr0g such that sup� τrθr0EjξðθÞj 2o1, where E½��
stands for the mathematical expectation operator with respect to
the given probability measure P. We also let l1 denote the class of
essentially bounded function u from ½0;1Þ to Rn with
JuJ1 ¼ esssuptZ0fjuðtÞj ; tZ0go1. The shorthand diagf⋯g
denotes the block diagonal matrix.

Consider the following class of stochastic neutral recurrent
neural networks with mixed delays:

for all tZ0; i¼ 1;2;…;n, where xi(t) is the state variable of the ith
neuron at time t, and the constant di denotes the self-feedback
connection weight coefficient of the ith unit. The constants aij;bij
and cij are the weight coefficients of the neurons, and f jðxjðtÞ; gjðxj
ðtÞÞ and hjðxjðtÞÞ are the neuron activation functions. uðtÞ ¼
ðu1ðtÞ;u2ðtÞ;…;unðtÞÞT is an external input vector to neurons. The
time-varying delay τ1ðtÞ and distributed delay τ2ðtÞ satisfy
0rτ1ðtÞrτ1;0rτ2ðtÞrτ2. Let τ ¼maxfτ1; τ2g. The noise pertur-
bation σijðtÞ : R� R� R-R is a Borel measurable function, and f
ωðtÞ ¼ ðω1ðtÞ;ω2ðtÞ;…;ωnðtÞÞ; tZ0g is an n-dimensional standard

d½xiðtÞ�
Xn
j ¼ 1

pijxjðt�τ1ðtÞÞ� ¼ ½�dixiðtÞþ
Xn
j ¼ 1

aijf jðxjðtÞÞþ
Xn
j ¼ 1

bijgjðxjðt�τ1ðtÞÞÞþ
Xn
j ¼ 1

cij

Z t

t� τ2ðtÞ
hjðxjðsÞ ds

þuiðtÞ� dtþ
Xn
j ¼ 1

σijðxjðtÞ; xjðt�τ1ðtÞÞ; xjðt�τ2ðtÞÞÞ dωjðtÞ

xiðtÞ ¼ ξiðtÞ; �τrtr0;
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