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a b s t r a c t

Matrices are appropriate for representing a wealth of data with complex structures such as images and
electroencephalogram data (EEG). To learn a classifier dealing with these matrix data, the structure
information of the feature matrix is useful. In this paper, we focus on the regularized matrix classifiers
whose input samples and weight parameters are both in the form of a matrix. Some existing approaches
assume that the weight matrix has a low-rank structure and then utilize the popular nuclear norm of the
weight matrix as a regularization term. However, the optimization methods for these matrix classifiers
often involve numbers of expensive singular value decomposition (SVD) operations, which prevents
scaling beyond moderate matrix sizes. To reduce the time complexity, we propose a novel learning
algorithm called Atom Decomposition Based Subgradient Descent (ADBSD), which solves the optimiza-
tion problem for the matrix classifier whose objective function is the combination of the Frobenius
matrix norm and nuclear norm of the weight matrix along with the hinge loss function. Our ADBSD is an
iterative scheme which selects the most informative rank-one matrices from the subgradient of the
objective function in each iteration. We consider using the atom decomposition based methods to
minimize nuclear norm because they mainly rely on the computation of top singular vector pair which
leads to great advantages on efficiency. We empirically evaluate the performance of the proposed
algorithm ADBSD on both synthetic and real-world datasets. Results show that our approach is more
efficient and robust than the state-of-the-art methods.

& 2016 Published by Elsevier B.V.

1. Introduction

Linear classifiers such as support vector machines (SVM) [1]
and logistic regression [2] play an important role in statistical
learning. These linear classifiers often assume that the input
samples are in the form of a vector. When the input samples are
images or electroencephalography (EEG) datasets of alcoholism
[3], a direct solution is to stack the columns of a matrix into a
vector. However, this solution will bring in two drawbacks. First,
naively turning a matrix into a vector destroys the structure
information possessed by the matrix form. For example, the spatial
relationship between some of the nearby image pixels will be
eliminated [4]. And in EEG data, the correlation of the voltage
values of the adjacent time points and channels will be difficult to
capture [5]. Moreover, the process of vectorization produces a

high-dimensional vector whose dimension is the product of the
width and height of a matrix, which leads to the curse of dimen-
sionality. Thus, it is more appropriate to represent these data as
matrices.

There is a body of related work on developing effective matrix
classification methods which try to capture the structure infor-
mation by conveying the input samples and weight parameters
through the form of a matrix. For instance, [6] proposed a bilinear
classification algorithm called support tensor machine which
considers a document as a second order tensor. Ref. [5] introduced
a class of regularized matrix regression methods (R-GLM) based on
spectral regularization, which are solved by the Nesterov optimal
gradient method. Recently, [7] devised a support matrix machine
model which applies the nuclear norm of the weight matrix as a
convex approximation of the matrix rank. As we can see, most of
these algorithms assume that the performance of the classifiers
can be improved by imposing a low-rank restriction on the weight
matrix. However, their methods either use a non-convex objective
function or cost too much time for optimization.
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In [8–11], rank constraint has been employed to capture the
global structure of data. To leverage the structure information of
the matrix data, we also consider a regularized matrix classifier
based on the low-rank constraint of the weight matrix. And we
utilize nuclear norm as a convex alternative of the matrix rank
because nuclear norm is the tightest convex lower bound of the
rank operator under certain condition. Then we formulate the
objective function as the combination of the Frobenius matrix
norm and nuclear norm penalty along with the hinge loss func-
tion. Ref. [7] derived the same objective function and resorted to
an alternating direction method of multipliers (ADMM) to opti-
mize it. However, their ADMM solver involves numbers of
expensive singular value decomposition (SVD) operations, which
brings excessive computation cost on training time and memory
for large scale matrices. Motivated by this observation, we are
concerned with applying greedy atom decomposition based
methods to the nuclear norm minimization.

In this paper, we propose a new method called Atom Decom-
position Based Subgradient Descent (ADBSD) to address the matrix
classification problem. The proposed ADBSD is an iterative scheme
which applies atom decomposition methods to the current sub-
gradient matrix of the objective function and select several
important bases to update the weight matrix in each step. Taking
into account the speed and accuracy in the process of generating
bases, a two-stage algorithm is devised. In each stage, we utilize a
different method to choose the suitable bases from the current
subgradient matrix and then generate the corresponding coeffi-
cients. In the first stage, we use the subgradient matrix to identify
an active subspace like [12]. Then we can select several informa-
tive bases from the subspace as accurate as possible and compute
the corresponding coefficients by a second order method. In the
second stage, we develop a greedy atom decomposition based
algorithm called Rank-one Subgradient Descent which is similar to
Rank-one Descent in [13] to generate the most suitable basis
which is the product of the approximate top singular-vector pair of
the subgradient matrix iteratively. By alternating these two stages,
our ADBSD can achieve competitive classification accuracy and
extremely good computation efficiency.

The rest of the paper is arranged as follows. First, we give the
notations and review the related work on nuclear norm mini-
mization and regularized matrix classification. Then we describe
our matrix classifier and the proposed learning algorithm in detail.
After that, we evaluate the performance of our method on several
synthetic and real-world datasets. Finally, some concluding
remarks are present.

2. Notations

Before continuing, we provide here a brief summary of the
notations used throughout the paper. The singular value decom-
position of a matrix XARp�q is UΣVT , where Σ¼ diagðσ1ðXÞ;…;

σminðp;qÞðXÞÞ and σ1ðXÞZσ2ðXÞZ⋯Zσminðp;qÞðXÞZ0 are the sin-
gular values of X. The nuclear norm is defined as
JXJn ¼

Pminðp;qÞ
i ¼ 1 σiðXÞ. In addition, the Frobenius norm is defined

as JXJF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jX
2
ij

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPminðp;qÞ
i ¼ 1 σiðXÞ2

q
.

3. Related work

In this section, we only briefly review the recent work on
nuclear norm minimization and regularized matrix classification.

3.1. Nuclear norm minimization

There has been much work on developing efficient nuclear
norm minimization solvers, which fall into two categories
according to the fundamental operations of these approaches. The
first set of these methods involves computing expensive singular
value decomposition (SVD) iteratively, including singular value
thresholding (SVT) [14], Truncated Nuclear Norm Regularization
(TNNR) [15] and Iteratively Reweighted Nuclear Norm (IRNN) [16].
These techniques rely on SVD calculations, which prevent their
scaling to large matrices. Considering the high computational
complexity of SVD, some researchers study to extend the greedy
atom decomposition techniques from the vector case to the matrix
case, where the atom is substituted by a rank-one matrix as one
basis. The second set of these methods only requires computing
the top singular vector pair (top SVD) which is used to generate
the most suitable rank-one matrix as one atom [17–19]. In general,
these approaches alternate between two main steps in each
iteration. The first step needs to compute the most informative
atom formed by the top singular vector pair of the current prox-
imal gradient. Then the coefficients of the atoms obtained up to
the current iteration should be updated in the second step. The
key idea of these algorithms is the way for refining the coefficients.
Although the greedy atom decomposition based methods have
great advantage on efficiency, they usually bear unsatisfactory
performance because some atoms selected according to local
information are unimportant in the long term.

3.2. Regularized matrix classification

At first, we give the original formulation for matrix classifica-
tion problem. Assuming that there is a set consisting of n training
examples S¼ fXi; yigni ¼ 1, where XiAR

p�q is the i-th input example
and yiAf�1;1g is its corresponding category. Because the tradi-
tional linear classifiers only use a vector as the input, the con-
venient way is to stack the columns of Xi into a vector xi. Then one
of the most successful approaches is the soft margin support
vector machine (SVM) which is defined as

min
w;b

1
2
ðwTwÞþC

Xn
i ¼ 1

1�yiðwTxiþbÞ� �
þ ; ð1Þ

where 1�yiðwTxiþbÞ� �
þ is the hinge loss, wARpq is a vector of

regression coefficients and b is the bias. However, vectorization
results in an exceedingly large dimensionality and ignores the
structure information of the feature matrix.

Therefore, we express the input samples and weight para-
meters through the matrix form, so the objective function can be
reframed as below:

min
W;b

1
2
trðWTWÞþC

Xn
i ¼ 1

1�yiðtrðWTXiÞþbÞ
h i

þ
; ð2Þ

where WARp�q is the weight matrix and b is the bias.
Obviously, rank restriction is a general regularization way for

the matrix form. Then it is natural to impose a low-rank constraint
on weight matrix W to capture the dependence of the matrix data.

A direct regularization method is to impose a matrix norm
penalty function based on the singular values of W on the loss
function. Ref. [5] proposed a class of regularized matrix regression
methods (R-GLM) based on spectral regularization:

min
W

lðWÞþpðWÞ; ð3Þ

where lðWÞ is a loss function and pðWÞ is a penalty function based
on the singular values of W. The authors utilized the Nesterov
optimal gradient method to solve (3).
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