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a b s t r a c t

This paper has two objectives: (a) it describes the problem of finding a precise and uncomplicated model
of a neutralisation process, (b) it details development of a nonlinear Model Predictive Control (MPC)
algorithm for the plant. The model has a cascade Wiener structure, i.e. a linear dynamic part is followed
by a nonlinear steady-state one. A Least-Squares Support Vector Machine (LS-SVM) approximator is used
as the steady-state part. Although the LS-SVM has excellent approximation abilities and it may be found
easily, it suffers from a huge number of parameters. Two pruning methods of the LS-SVM Wiener model
are described and compared with a classical pruning algorithm. The described pruning methods make it
possible to remove as much as 70% of support vectors without any significant deterioration of model
accuracy. Next, the pruned model is used in a computationally efficient MPC algorithm in which a linear
approximation of the predicted output trajectory is successively found on-line and used for prediction.
The control profile is calculated on-line from a quadratic optimisation problem. It is demonstrated that
the described MPC algorithmwith on-line linearisation based on the pruned LS-SVMWiener model gives
practically the same trajectories as those obtained in the computationally complex MPC approach based
on the full model with on-line nonlinear optimisation repeated at each sampling instant.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Good control of neutralisation processes is necessary in che-
mical engineering, biotechnology and waste-water treatment
industries [16]. Both steady-state and dynamic properties of the
neutralisation process are nonlinear, which means that it is diffi-
cult to control by the classical linear control methods (e.g. PID), in
particular when the set-point or other operating conditions
change significantly and fast. In addition to its industrial sig-
nificance, the neutralisation process is a classical benchmark used
for evaluation of different nonlinear model structures and control
methods. Due to nonlinearity of the process adaptive control
techniques may be used, in particular a model reference adaptive
neural network control strategy [23], an adaptive nonlinear output
feedback control scheme containing an input–output linearising
controller and a nonlinear observer [15], an adaptive nonlinear
Internal Model Controller (IMC) [22] and an adaptive backstepping
state feedback controller [47]. An alternative is to use multi-model
controllers, e.g. a multi-model PID controller based on a set of
simple linear dynamic models [5], a multi-model robust H1 con-
troller [11], or fuzzy structures, e.g. a fuzzy PI controller [10], a

fuzzy PID controller [19] and a fuzzy IMC structure [21]. An
adaptive fuzzy sliding mode controller is presented in [7], a non-
linear IMC structure is discussed in [30]. Another options are a
neural network linearising scheme cooperating with a PID con-
troller [23], a model-free learning controller using reinforcement
learning [41] and an approximate multi-parametric nonlinear MPC
controller [14].

Unlike the classical control approaches, such as PID, in which
the model of the process is used only during development of the
controller, in Model Predictive Control (MPC) algorithms [42] a
dynamic model of the controlled process is used directly on-line.
The model calculates predictions of the output (or state) variables,
which are next used during optimisation of the control sequence.
Prediction and optimisation are repeatedly performed on-line.
Optimisation makes it possible not only to find the best possible
control profile which results in excellent set-point tracking and
disturbance compensation, but also to take into account con-
straints imposed on process inputs (manipulated variables) and
outputs (controlled variables) or state variables in a natural and
efficient manner. Furthermore, the MPC approach is very universal
as it allows to control multiple-input multiple-output processes.
That is why the MPC algorithms have been successfully used for
years in numerous advanced applications. Example applications of
MPC include a mobile robot [1], an automotive engine [2], an
active queue management system in TCP/IP networks [4], a flexible

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2016.03.066
0925-2312/& 2016 Elsevier B.V. All rights reserved.

n Tel.: þ48 22 234 71 24; fax: þ48 22 825 37 19.
E-mail address: M.Lawrynczuk@ia.pw.edu.pl

Neurocomputing 205 (2016) 311–328

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.03.066
http://dx.doi.org/10.1016/j.neucom.2016.03.066
http://dx.doi.org/10.1016/j.neucom.2016.03.066
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.03.066&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.03.066&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.03.066&domain=pdf
mailto:M.Lawrynczuk@ia.pw.edu.pl
http://dx.doi.org/10.1016/j.neucom.2016.03.066


manipulator [9], an electric vehicle [27], a cutting process [33], a
multi-tank water system [36], an unmanned aerial vehicle [38], a
distillation column [43], an air conditioning system [46].

The neutralisation process may be controlled by MPC algo-
rithms. A multiple-model control strategy based on a set of clas-
sical linear MPC controllers is described in [8,11]. A neural network
trained off-line to mimic the nonlinear MPC algorithm may be also
used [3]. A continuous-time MPC algorithm using a piecewise-
linear approximation, which simplifies implementation, is dis-
cussed in [31]. When a nonlinear model is used directly in MPC for
prediction, the MPC optimisation problem solved at each sampling
instant on-line is a nonlinear task. Applications of such nonlinear
MPC algorithms to the neutralisation process are reported in
[26,45]. On-line nonlinear optimisation is not only computation-
ally demanding, but also convergence problems are possible, the
obtained solution may be a local minimum, not the global ones. A
practical solution leading to reduction of computational burden is
to use for prediction not the full nonlinear model, but its local
linear approximation or an approximation of the predicted tra-
jectory [24]. Successive on-line linearisation makes it possible to
eliminate the necessity of solving on-line a nonlinear MPC opti-
misation problem as at each sampling instant an easy to solve
quadratic optimisation task is solved. Nonlinear MPC algorithms
with successive on-line model or trajectory linearisation applied to
the neutralisation process are described in [25]. An excellent
review of possible MPC approaches to the neutralisation process is
given in [16].

The basic issue to address during development of MPC algo-
rithms is the choice of the model. Although a number of black-box
model structures exist [28], e.g. polynomials, fuzzy systems, neural
networks, wavelets, etc., in case of the neutralisation reactor a
cascade block-oriented Wiener model may be efficiently used, e.g.
[23,26,30,45]. The Wiener structure consists of a linear dynamic
part and a nonlinear steady-state one connected in series [12,18].
As the steady-state part of the Wiener model a neural network
may be used [25]. Neural networks are excellent approximators,
but training (although performed off-line) is a quite demanding
nonlinear optimisation problem. In order to find a good neural
model a number of networks (with different initial weights and
different number of hidden nodes) are trained and the best one is
finally chosen for application. An interesting alternative is to use a
Support Vector Machine (SVM) approximator [37]. Although the
SVM model is nonlinear, its identification requires solving convex
optimisation problems, typically quadratic programming ones. An
extension of the SVM approximator is a Least Squares Support
Vector Machine (LS-SVM), whose identification is even simpler as
only least-squares problems are solved [39]. An important dis-
advantage of LS-SVM is lack of spareness, i.e. the number of sup-
port vectors is the same as the number of training samples. To
reduce the number of parameters some pruning algorithms may
be used, e.g. the approach discussed by the authors of the LS-SVM
approximator [40] which consists in eliminating the support vec-
tors with the smallest absolute value of spectrum. A more com-
plicated pruning algorithm is detailed in [20], the sequential
minimal optimisation (SMO) pruning method is introduced in [48].

This paper reports model identification and pruning of the
neutralisation reactor. Two pruning methods of the Wiener LS-
SVM model are compared with a classical pruning algorithm. Next,
the MPC algorithm with successive on-line trajectory linearisation
and quadratic optimisation is developed for the pruned model of
the process. The discussed MPC algorithm is compared with a
computationally complex MPC approach with on-line nonlinear
optimisation repeated at each sampling instant. The effect of
model pruning on its quality, control performance of MPC and its
computational complexity is discussed. Although both SVM and
LS-SVM approximators have been used in MPC, e.g. a multiple-

tank system process is considered in [17], a flight control problem
in [38] and an air-conditioning system in [46], in the cited works
computationally demanding on-line nonlinear optimisation is
used at each sampling instant.

This paper is organised as follows. Section 2 reminds the general
idea of MPC and Section 3 describes the structure of the LS-SVM
Wiener model. The main parts of the paper, given in Sections 4
and 5, discuss the MPC algorithm with on-line trajectory linear-
isation for the LS-SVM Wiener model, its identification and prun-
ing. Section 6 thoroughly discusses development of the model and
predictive control of the considered neutralisation reactor. Finally,
Section 7 concludes the paper.

2. Predictive control problem formulation

Let the input (the manipulated variable) of the considered
dynamic system be denoted by u and the output (the controlled
output) of the system be denoted by y. In MPC algorithms [42] at
each consecutive sampling instant k not only the current value u
(k) of the manipulated variable is calculated, but a set of future
increments

ΔuðkÞ ¼ ΔuðkjkÞ Δuðkþ1jkÞ…ΔuðkþNu�1jkÞ� �T ð1Þ
is found, where Nu is the control horizon and the increments are
defined as

ΔuðkþpjkÞ ¼
uðkjkÞ�uðk�1Þ if p¼ 0
uðkþpjkÞ�uðkþp�1jkÞ if pZ1

(

The symbol uðkþpjkÞ denotes the value of the input signal for the
future sampling instant kþp calculated at the current instant k. It
is assumed that ΔuðkþpjkÞ ¼ 0 for pZNu. The objective of the
MPC algorithm is to minimise differences between the set-point
trajectory and the corresponding predicted values of the output
signal over the prediction horizon, NZNu, and to penalise exces-
sive control increments. Hence, the future decision variables of
MPC (Eq. (1)) are determined from an optimisation procedure. The
cost-function is typically

JðkÞ ¼
XN
p ¼ 1

ðyspðkþpjkÞ� ŷðkþpjkÞÞ2þ
XNu �1

p ¼ 0

λðΔuðkþpjkÞÞ2 ð2Þ

where the set-point for the sampling instant kþp known at the
current instant k is yspðkþpjkÞ (very frequently it is assumed that
yspðkþpjkÞ ¼ yspðkÞ for all p¼ 1;…;N), the future value of the
process output signal predicted for the instant kþp at the instant k
is denoted by ŷðkþpjkÞ, λ40 is a weighting coefficient (the bigger
the λ, the slower the algorithm). The problem of tuning MPC
algorithms, i.e. adjusting parameters λ, N, Nu, is discussed else-
where [42]. If it is necessary to take into account some constraints
imposed on the manipulated and controlled variables, the future
control increments (1) are found on-line at each sampling instant
from the following optimisation problem

min
Δuðkj kÞ;…;ΔuðkþNu �1j kÞ

JðkÞ� �
subject to uminruðkþpjkÞrumax; p¼ 0;…;Nu�1
�ΔumaxrΔuðkþpjkÞrΔumax; p¼ 0;…;Nu�1

yminr ŷðkþpjkÞrymax; p¼ 1;…;N ð3Þ
where umin, umax, Δumax, ymin, ymax define constraints imposed on
the magnitude of the input variable, on the increment of the input
variable and on the magnitude of the predicted output variable,
respectively. The MPC optimisation task (3) is solved on-line at
each sampling instant which gives the future control increments
(1), but only the first element of the determined sequence is
applied to the process, i.e. uðkÞ ¼ΔuðkjkÞþuðk�1Þ. At the next
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