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a b s t r a c t

Time-varying group formation control problems for second-order multi-agent systems with directed
topologies are investigated. Firstly, a time-varying group formation control protocol is constructed using
local relative positions and velocities of each agent and its neighbors. Then based on graph theory,
nonsingular transformations are applied to the closed-loop multi-agent systems. Sufficient conditions for
second-order multi-agent systems to achieve time-varying group formation are further presented
together with the time-varying group formation feasibility constraints. Explicit expressions of the sub-
group formation reference functions are derived to describe the macroscopic movement of the time-
varying subgroup formations. Moreover, by solving an algebraic Riccati equation, an approach to design
the time-varying group formation protocol is proposed. Finally, a numerical example with three sub-
groups is provided to demonstrate the effectiveness of the obtained results. In contrast to the traditional
complete formation, where only one formation is realized by the multi-agent system, in the group for-
mation discussed in the current paper, agents are classified into subgroups and each subgroup is required
to form a specified time-varying sub-formation via inter-subgroup and intra-subgroup interactions.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The research on formation control of multi-agent systems has
attracted an increasing interest in recent years due to its broad
potential applications in various fields, such as cooperative loca-
lization [1], load transportation [2], surveillance [3] and target
enclosing [4]. Although in the past decades, several centralized
and decentralized strategies have been proposed to deal with the
formation control problems, how to realize the predefined for-
mation via local neighboring interactions is still a current concern
in both the control theory and robotics communities [5,6].

With the development of consensus theory, there is an emer-
ging trend to study the formation control problem in the view of
consensus control. Ren [7] proposed a general formation control
framework for second-order multi-agent systems by extending the
consensus protocols. Sufficient conditions for multi-agent systems
with second-order dynamics to achieve time-invariant formations
via local interactions were presented in [8]. Time-invariant for-
mation control problems for second-order multi-agent systems

with time delays were addressed in [9]. A distributed controller for
first-order multi-agent systems to achieve rigid formations was
constructed in [10]. Oh and Ahn [11] proposed a formation control
strategy for first-order multi-agent systems using the distributed
position estimation. Distributed formation control problems for
first-order multi-agent systems were investigated in [12] by
means of complex laplacian analysis. Sufficient conditions for first-
order multi-agent systems to achieve circular formations in one-
dimensional and three-dimensional spaces were presented in [13]
and [14], respectively. Necessary and sufficient conditions for
second-order multi-agent systems with fixed and switching
topologies to achieve time-varying formations were proposed in
[15] and [16], respectively.

It should be pointed out that in the aforementioned works
[7–16], only complete formation control problems were con-
sidered, where all the agents form a single formation. However, in
many practical circumstances, such as multi-target enclosing,
obstacle avoidance and cooperative searching for multiple objects,
agents in a multi-agent system may split into several subgroups to
accomplish different distributed tasks. In such scenarios, group
formation control problems arise, where there can be multiple
different sub-formations in the multi-agent system and agents in
the same subgroup achieve one predefined sub-formation. To the
best of our knowledge, time-varying group formation control
problems for second-order multi-agent systems have not been
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studied before. One relevant topic is group (or cluster) consensus
control, where there exist multiple subgroups and agents in the
same subgroup reach an agreement. Group consensus control
problems for first-order multi-agent systems with switching
topologies and communication delays were addressed in [17].
Necessary and sufficient conditions for first-order multi-agent
systems to achieve the cluster or group consensus were provided
in [18] and [19], respectively. Group consensus control problems
for second-order multi-agent systems were studied in [20]
through leader-following approach and pinning control. Necessary
and sufficient conditions for second-order multi-agent systems to
achieve group consensus were proposed in [21]. Although group/
cluster consensus problems were studied in [17–21], the obtained
results cannot be extended directly to deal with the time-varying
group formation control problems for second-order multi-agent
systems directly.

Motivated by the facts stated above, this paper investigates the
time-varying group formation analysis and design problems for
second-order multi-agent systems with directed topologies.
Firstly, agents in the multi-agent systems are partitioned into
subgroups. A time-varying sub-formation is predefined for each
subgroup. Time-varying group formation control protocol is con-
structed based on the local inter-subgroup or intra-subgroup
information. By assuming that the directed graph of the multi-
agent system has an acyclic partition and each subgroup has a
spanning tree, sufficient conditions for second-order multi-agent
systems to achieve time-varying group formation are proposed. A
time-varying group formation feasibility constraint is also given.
Then explicit expressions of the subgroup formation reference
functions are presented to describe the macroscopic movement of
the time-varying group formation. Finally, an approach to design
the time-varying group formation protocol is given by solving an
algebraic Riccati equation.

Compared with the previous results on formation control and
group/cluster consensus control, the novel features of the current
paper are threefold. Firstly, the agents in the current paper can be
partitioned into multiple subgroups and multiple sub-formations
can be realized by the whole multi-agent system. In [7–16], only
complete formation control problems were studied, where all
agents interact as a whole group and only one formation is rea-
lized for all the agents. Group formation control problems are
much complicated and challenging than the complete formation
since there exist both inter-subgroup interactions and intra-
subgroup interactions, and multiple sub-formations. Moreover,
the time-varying group formation is more general and these
complete formations discussed in [7–16] can all be regarded as
special cases of the one in the current paper where only one group
exists. Secondly, the multiple sub-formations can be time-varying.
In [17–21], group/cluster consensus control problems for first-
order and second-order multi-agent systems were addressed.
Although the results on group/cluster consensus are potential to
solve some constant group formation control problems, they
cannot be extended to solve the time-varying group formation
control problems in the current paper due to that the time-varying
formation will bring the derivative of the formation information to
both the analysis and design of the group formation control law.
By choosing the time-varying formation vectors to be zero, the
time-varying group formation control problems become group/
cluster consensus problems investigated in [17–21]. Thirdly,
explicit expressions for the time-varying formation reference
functions of all the sub-formations are derived to describe the
macroscopic movements of all the subgroups. Although the mac-
roscopic movement of the whole multi-agent system can be
described by the explicit expression of the formation reference
function in [15] and [16], they only considered the complete

formation case and the approaches proposed in [15] and [16]
cannot be directly used to solve the problems in the current paper.

The remainder of this paper is organized as follows. In Section
2, basic definitions and notations on graph theory are given and
the problem description is introduced. Main results which include
sufficient criteria and protocol design approaches are proposed in
Section 3. In Section 4, simulation results are given to demonstrate
the effectiveness of the results in this paper. Finally, conclusions
are given in Section 5.

Some notations used in this paper are given as follows. Let 0n

and 1n be zero matrices and column vectors of ones with
dimension n. Let IN represent an identity matrix with dimension N,
and � denote the Kronecker product.

2. Preliminaries and problem description

In this section, basic concepts and notations on graph theory
are introduced and the problem description is presented.

2.1. Preliminaries

A weighted directed graph of order N can be denoted by
G¼ fV ; E;Wg, where V ¼ v1; v2;…; vNf g is the node set, ED
ðvi; vjÞ : vi; vjAV
� �

is the edge set and W ¼ ½wij�ARN�N the
weighted adjacency matrix. An edge in G is represented by
eij ¼ ðvi; vjÞ ðia jÞ. For any i; jAf1;2;…;Ng, the adjacency element
wij in W satisfies that wjia0 if and only if eijAE, and wij ¼ 0
otherwise. Denote by Ni ¼ vjAV : ejiAE

� �
the neighbor set of node

vi. The in-degree of node vi is defined as deginðviÞ ¼
PN

j ¼ 1 wij. Let
D¼ diag deginðviÞ; i¼ 1;2;…;N

� �
be the degree matrix of G. The

Laplacian matrix LARN�N of G is defined as L¼D�W . A directed
path from vi to vj is a finite ordered sequence edges with the form
of ðvi; vk1 Þ, ðvk1 ; vk2 Þ;…; ðvkl� 1

; vkl Þ, ðvkl ; vjÞ. A directed graph with no
cycles is called a directed acyclic graph. A directed graph is said to
contain a spanning tree if there exist at least a node which has a
directed path to any other nodes.

2.2. Problem description

Consider a second-order multi-agent systemwith N agents. The
dynamics of agent i ðiAf1;2;…;NgÞ is described by

_xiðtÞ ¼ viðtÞ;
_viðtÞ ¼ αxxiðtÞþαvviðtÞþuiðtÞ;

(
ð1Þ

where nZ1 is the dimension of the space, xiðtÞARn, viðtÞARn and
uiðtÞARn denote, respectively, the position, velocity and control
input vectors of agent i, and αxAR and αvAR are known damping
constants. In the following, for simplicity of description, let n¼1 if
not otherwise specified. However, by applying the Kronecker
product, all the results hereafter can be directly extended to the
higher dimensional case. The interaction topology among the N
agents can be modeled by the directed graph G with node i
representing the agent i in multi-agent system (1) and eij denoting
the interaction from agent i to agent j with the associated inter-
action strength wji.

Remark 1. From (1), one sees that in the case where αx ¼ 0 and
αv ¼ 0, the second-order model in the current paper becomes the
classic double-integrator one. Therefore, the second-order model
described by (1) can be treated as an extension to the double-
integrator one and has more generality.

Suppose that multi-agent system (1) consists of gAN ðgZ1Þ
subgroups, and the node set V can be partitioned into
V1;V2;…;Vg , where Vka∅ ðk¼ 1;2;…; gÞ, [g

k ¼ 1Vk ¼ V and Vk \
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