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a b s t r a c t

Twin-KSVC, as a novel multi-class classification algorithm, aims at finding two nonparallel hyper-planes
for the two focused classes of samples by solving a pair of smaller-sized quadratic programming pro-
blems (QPPs), which makes the learning speed faster than other multi-class classification algorithms.
However, the local information of samples is ignored, and then each sample shares the same weight
when constructing the separating hyper-planes. In fact, they have different influences on the separating
hyper-planes. Inspired by the studies above, we propose a K-nearest neighbor (KNN)-based weighted
multi-class twin support vector machine (KWMTSVM) in this paper. Weight matrix W is employed in the
objective function to exploit the local information of intra-class. Meanwhile, both weight vectors f and h
are introduced into the constraints to exploit the information of inter-class. When component f j ¼ 0 or
hk ¼ 0, it implies that the j-th or k-th constraint is redundant. Removing these redundant constraints can
effectively improve the computational speed of the classifier. Experimental results on eleven benchmark
datasets and ABCD dataset demonstrate the validity of our proposed algorithm.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The support vector machine (SVM) [1] is a popular machine
learning technique and it has many advantages. First, SVM solves a
QPP, assuring that once an optimal solution is obtained, it is the
unique (global) solution. Second, SVM derives a sparse and robust
solution by maximizing the margin between two classes. Third,
SVM implements the structural risk minimization principle rather
than the empirical risk minimization principle, which minimizes
the upper bound of the generalization error.

One of main challenges for the classical SVM is the high com-
putational complexity. The training cost of Oðl3Þ, where l is the
total size of training data, is expensive. To improve the computa-
tional speed, Jayadeva et al. proposed a twin support vector
machine (TSVM) classifier [2] for the binary classification in the
spirit of proximal SVM [3–5]. TSVM determines two nonparallel
hyper-planes by solving two smaller-sized and related SVM-type
problems, where each hyper-plane is closer to one class and as far
as possible from the other. The strategy of solving two smaller-
sized QPPs rather than a single larger-sized one, makes the
learning speed of TSVM approximately 4 times faster than that of
the classical SVM. At present, TSVM has become one of the popular
methods because of its low computational complexity. Many

variants of TSVM have been proposed in recent years [6–15], and
they enrich the related theory of TSVM.

Multi-class classification problem is often met in our real life.
At present, we usually resolve it by two approaches: one-versus-
one, and one-versus-rest [16–19]. It needs us to construct kðk�1Þ=2
possible binary classifiers and only two kinds of samples are
involved for each classifier in the first approach, and no informa-
tion is given for the rest samples, therefore we receive unfavorable
outputs. The second approach easily leads to the class imbalance
problem and produces a bad performance [20,21].

Although a multi-class problem can be transformed into a
series of binary classification problems and some effective meth-
ods in two-class learning can be used, recent studies [22] have
shown that some binary classification techniques are often not so
useful when being applied to the multi-class problem directly. A
new multi-class classification algorithm, called K-SVCR, was pro-
posed in [23] for the k-class classification purpose, which produces
better forecasting results as it evaluates all the training points into
the 1-vs-1-vs-rest structure. Therefore, it has received much
attention.

By integrating both the structural advantage of K-SVCR and the
speed's advantage of TSVM, Xu [24] proposed a novel multi-class
classification algorithm, called Twin-KSVC. It first constructs two
nonparallel hyper-planes for the two focused classes of samples
from k classes, and then maps the remaining samples into a region
between the two nonparallel hyper-planes. Two nonparallel
hyper-planes are obtained by solving two smaller-sized QPPs
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rather than a single large one as in the K-SVCR, which implies that
its computational speed is at least 4 times faster than that of the
classical K-SVCR in theory. However, the local information is not
exploited in Twin-KSVC, and samples share the same effects on the
classification hyper-plane. In fact, they have different effects.

KNN method is an effective tool to exploit the local information
in classification and regression problems [25–28]. But the present
research on the classification problem is only limited to the binary
classification problem. In binary classification problem, it not only
can exploit the intra-class information but also the inter-class
information, and its value embodies in the objective function W
and constraint condition f. However, in the regression problem, it
only embodies in the objective function W since there is no label
for a point. Inspired by the studies above, we introduce the KNN
method to the multi-class classification problem, and propose a
KNN-based weighted multi-class twin support vector machine in
this paper. Different weights Ws are given to samples from the
same class, meanwhile functions f and h are introduced into the
constraints to exploit the information of inter-class. When com-
ponent f j ¼ 0 or hk ¼ 0, it implies that the j-th or k-th constraint is
redundant. Removing these redundant constraints can effectively
improve the computational speed of the classifier. Experimental
results on eleven benchmark datasets and ABCD dataset demon-
strate the validity of our proposed algorithm.

The paper is organized as follows. Section 2 outlines the TSVM
and Twin-KSVC. A KNN-based weighted twin support vector
machine for multi-class classification problem is proposed in
Section 3, which includes both the linear and nonlinear cases.
Algorithm analysis is shown in Section 4. Numerical experiments
on eleven real-world benchmark datasets and ABCD dataset are
conducted to investigate the effectiveness of our proposed algo-
rithm in Section 5. The last section contains the conclusions.

2. Related works

In this section, we review the basics of TSVM and Twin-KSVC.

2.1. Twin support vector machine

TSVM generates two nonparallel hyper-planes instead of a
single one as in the conventional SVMs. The two nonparallel
hyper-planes are obtained by solving two smaller sized QPPs as
opposed to a single large one in the standard SVMs. Consider a
binary classification problem with l1 samples belonging to class
þ1 and l2 samples belonging to class �1 in the n-dimensional real
space Rn. Let matrix AARl1�n represent the positive samples and
matrix BARl2�n represent the negative samples. The linear TSVM
seeks two nonparallel hyper-planes

xTw1þb1 ¼ 0 and xTw2þb2 ¼ 0 ð1Þ
such that each hyper-plane is closer to one class and as far as
possible from the other. A new sample is assigned to class þ1 or
�1 depending upon its proximity to the two nonparallel hyper-
planes.

TSVM is obtained by solving the following pair of QPPs:

min
w1 ;b1 ;ξ

1
2
JAw1þe1b1 J2þc1eT2ξ

s:t: �ðBw1þe2b1ÞZe2�ξ;
ξZ0e2; ð2Þ

and

min
w2 ;b2 ;η

1
2
JBw2þe2b2 J2þc2eT1η

s:t: ðAw2þe1b2ÞZe1�η;

ηZ0e1: ð3Þ
By introducing the Lagrangian multipliers α and β, we can derive
their dual problems as follows:

max
α

eT2α�
1
2
αTGðHTHÞ�1GTα

s:t: 0e2rαrc1e2; ð4Þ
and

max
β

eT1β�
1
2
βTHðGTGÞ�1HTβ

s:t: 0e1rβrc2e1: ð5Þ
Where H¼ ½Ae1� and G¼ ½Be2�. Once QPPs (4) and (5) are solved,
we can get vectors

w1

b1

" #
¼ �ðHTHÞ�1GTα; ð6Þ

and

w2

b2

" #
¼ ðGTGÞ�1HTβ: ð7Þ

A new testing sample xARn is assigned to class iði¼ þ1; �1Þ by

Class i¼ arg min
k ¼ 1;2

jxTwkþbk j
Jwk J

: ð8Þ

In TSVM, if the number of samples in two classes is approximately
equal to l=2, the computational complexity of TSVM is
Oð2� ðl=2Þ3Þ. Thus the ratio of run-times between SVM and TSVM
is l3=ð2� ðl=2Þ3Þ ¼ 4, which implies that TSVM works approxi-
mately four times faster than SVM in theory [2].

2.2. Multi-class twin support vector machine

Twin-KSVC generates two nonparallel hyper-planes for the two
focused classes of samples such that each hyper-plane is closer to
one class and as far as possible from the other. The remaining
samples are mapped into a region and satisfy constraints both �
ðxTw1þb1ÞZ1�ϵ and xTw2þb2Z1�ϵ, where ϵ is a positive
parameter chosen a priori. The two nonparallel hyper-planes

xTw1þb1 ¼ 0 and xTw2þb2 ¼ 0 ð9Þ
can be obtained by solving the following pair of QPPs,

min
w1 ;b1 ;ξ;η

1
2
JAw1þe1b1 J2þc1eT2ξþc2eT3η

s:t: �ðBw1þe2b1ÞþξZe2;

�ðCw1þe3b1ÞþηZe3ð1�ϵÞ;
ξZ0e2; ηZ0e3; ð10Þ

and

min
w2 ;b2 ;ξ

�
;η�

1
2
JBw2þe2b2 J2þc3eT1ξ

�þc4eT3η
�

s:t: ðAw2þe1b2Þþξ�Ze1;

ðCw2þe3b2Þþη�Ze3ð1�ϵÞ;
ξ�Z0e1; η�Z0e3; ð11Þ

where w1ARn�1, w2ARn�1, b1AR1�1, b2AR1�1, ξARl2�1, ηARl3�1,
ξ�ARl1�1, η�ARl3�1, e1ARl1�1, e2ARl2�1, and e3ARl3�1.

By introducing the Lagrangian multipliers α and β, we can
derive their dual problems as follows:

max
α

eT4α�
1
2
αTNðHTHÞ�1NTα

s:t: 0rαrF; ð12Þ
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