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a b s t r a c t

Correlation estimation plays a critical role in numerous applications of social network analysis. Tradi-
tionally, the numerical records of the interaction between users are used as quantitative metrics of
correlation. The deficiencies are threefold. Firstly, a single source of interaction is far from sufficient to
reveal the underlying correlation. Secondly, the data available are often partially observed result from the
imperfection in data acquisition and storage techniques, thereby jeopardizing the reliability of estima-
tion. Thirdly, the inference from the explicit features to the implicit correlation is far from straightfor-
ward. Simply taking interaction as correlation is neither theoretically nor practically plausible. The for-
mer issue can be addressed via matrix completion, whereas the latter is essentially a self-expressive
matrix representation problem. Instead of solving the two problems separately, in this paper, we propose
a simultaneous optimization algorithm for robust correlation estimation based on partially observed
data. In this way, the global, rather than local, optima can be achieved in an effective manner. The
experiments on both synthetic and real-world social network data demonstrate the advantage of the
proposed method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

During the last few years, the emergence of social networks has
introduced new ways of interpersonal communication among
people all around the world [1–4]. Based on various interactions
[5–7] in social networks, correlation between the users can be
inferred. These interactions can be embodied as direct inter-
personal activities, such as the status of friend or follower rela-
tionship, the frequency or intensity of online communications, and
so on. There are also indirect interactions represented by the
common friends or interests, the co-accessed contents, the
resemblance in user profiles, etc. The interaction is an informative
reflection of the correlation between users. Intuitively, closer
interaction implies closer correlation, and vice versa. However,
robust correlation estimation with high precision is no easy task.
Apparently, friends of a given user are not equally crucial; likewise,
users who have made more comments or forwarded more fre-
quently are not necessarily more closely related to a given user.
Robust correlation estimation is critical in social network analysis
and has shown promising application prospect. As the old saying
goes, birds of a feather flock together. The homophily in social
network indicates that the highly correlated users are inclined to

be grouped in the same community, and meanwhile share similar
behavior and tastes [8]. Consequently, the users’ interests can be
accurately modeled and reliable personalized services are possible
based on users’ correlation.

Various interactions provide an insight into the correlation
between users. Traditionally, the numerical records of a certain
kind of interaction are directly used as quantitative metrics of
correlation. Unfortunately, the reliability of the correlation is
rather questionable. Firstly, a single source of interaction is far
from sufficient to reveal the underlying correlation. Various
interactions as well as the user attributes can be used to generate a
comprehensive feature for correlation estimation. Secondly, both
interactions and attributes available are often partially observed
result from the imperfection in data acquisition and storage
techniques. In other words, the input feature available for corre-
lation estimation is only partially observed. As a result, the esti-
mation performance is inevitably jeopardized. Last but not least,
the inference from the explicit features to the implicit correlation
is far from straightforward. Simply taking a certain kind of inter-
action as correlation is neither theoretically nor practically
plausible.

Recent research work on subspace learning via matrix optimi-
zation has received great success and attracted intense attention
[9–11]. As we can see, for robust correlation estimation based on
partially observed social network, two key issues need to be
addressed, i.e. data completion from the partially observed
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features and correlation estimation from the complete data. The
former can be formulated as a matrix completion problem, which
seeks the optimal low-rank approximation to fit the observed data.
The latter can be interpreted as a self-expressive matrix repre-
sentation problem, which searches for the optimal linear repre-
sentation of the complete data. The two problems can be solved
independently in a separate mode, which brings about two local
optima. In this paper, we propose a simultaneous optimization
algorithm for robust correlation estimation based on partially
observed data, in which the two problems are incorporate into a
unified process and the global optima can be achieved in an
effective manner.

The rest of this paper is organized as follows. Section 2 gives a
detailed description of robust correlation estimation based on
partially observed data and formulates the proposed algorithm
based on matrix optimization. In Section 3, we discuss the effec-
tive solution to the optimization problem via an alternating
scheme. The experimental results are reported and discussed in
Section 4. Finally, the conclusion is drawn in Section 5.

2. Robust correlation estimation based on partially observed
data

2.1. Notation

Typically, a social network can be conventionally represented
by a graph model G¼(V, E), where V (|V|¼n) denotes the set of n
users and E the set of links between the users [12–15]. The inter-
action between n users can be depicted by the adjacency matrix
AAℝn�n. The element aijAA indicates the interaction intensity
between user vi and vj (vi, vj AV), or equivalently the weight of
edge eijAE. There is a wide variety in the evaluation of the adja-
cency matrix A. It can be attached with either binary values
indicating the existence of direct connection between users, or
numbers reflecting the interaction frequency. As a result, a set of
multiple adjacency matrices, i.e. {A1, A2, …, Ak}, can be obtained
from different ways of evaluation. Besides, attributes of all the
users constitute another matrix FAℝm�n, where m is the
dimension of the feature vector corresponding to a user's attri-
butes. Based on the adjacency matrices and the attribute matrix, a
feature matrix MAℝ(knþm)�n can be obtained by stacking all the
above matrices together.

M¼ AT
1 ;A

T
2;…;AT

k ; F
T

h iT
ð1Þ

As mentioned above, the partial observation scenario implies
that not all the entries of M are available. Using Ω to indicate all
the indices of observed entries, the available feature matrix is
denotes as MΩ. Based on the partially observed information
derived from both the interactions and attributes, i.e. MΩ, this
paper aims at recovering the complete feature matrix with its
approximation NAℝ(knþm)�n and deducing the underlying cor-
relation matrix WAℝn�n. The framework is illustrated in Fig. 1.

2.2. Problem formulation

Given the partially observed feature matrix MΩ, where Ω
stands for the indices of observed entries, it is indispensable to
infer the unobserved data. This is achieved via matrix completion,
which seeks the optimal low-rank approximation NAℝ(knþm)�n

to fit the observed data.

min
N

MΩ�NΩ
2
F þλ1rank Nð Þ

���� ð2Þ

The optimization problem (2) is NP-hard because of the exis-
tence of matrix rank in the regularization term. Typically, convex

relaxation is implemented by replacing the rank function with
nuclear norm, i.e. the sum of singular values [16–19].

min
N

MΩ�NΩ
2
F þλ1 N �kk

���� ð3Þ

With the complete feature matrix M recovered, revealing the
correlation matrix can be formulated as a self-expressive matrix
representation problem, which searches for the optimal linear
representation W of the complete data.

min
W

‖N�NW‖2F þλ2rank Wð Þ
s:t: diag Wð Þ ¼ 0; WZ0 ð4Þ
Similarly, convex relaxation can be applied to rank minimiza-

tion as follows:

min
W

‖N�NW‖2F þλ2‖W‖�

s:t: diag Wð Þ ¼ 0; WZ0 ð5Þ
Traditionally, separate optimization is implemented on (3) and

(5), respectively. It first recovers the complete feature matrix N by
solving (3), and then estimates the underlying correlation W
according to (5), using N as constant. The separate optimization
method address the matrix completion and self-expressive matrix
representation problems independently, yielding two local optima.
In this paper, we incorporate (3) and (5) into a unified optimiza-
tion function, so that the complete feature matrix M and the
underlying correlation matrix W can be obtained simultaneously.
We choose ℓ1 norm, i.e. the sum of the absolute values of matrix
entries, instead of Frobenius norm, so that the algorithm is less
vulnerable to outlier influence. The formulation is as follows.

min
N;W

‖MΩ�NΩ‖2F þα‖N‖�þβ‖N�NW‖1þγ‖W‖�

s:t: diag Wð Þ ¼ 0; WZ0 ð6Þ

3. Algorithm optimization

3.1. Preliminary

Two basic and frequently confronted problems in robust matrix
approximation are seeking for the optimal solution via sparse and
low-rank representation. Fortunately, the close form solutions are
available as given in (7) and (8) respectively [20].

arg min
X

λ‖X‖1þ
1
2

X�A 2
F ¼ Sλ Að Þ

���� ð7Þ

arg min
X

λ‖X‖�þ1
2

X�A 2
F ¼ J λ Að Þ

���� ð8Þ

In the above equations, Sλ is the soft-thresholding or shrinkage
operator defined as:

Sλ xð Þ ¼ sign xð ÞUmax xj j�λ;0
� � ð9Þ

which can be extended to vectors and matrices by operating ele-
ment wise; Iλ is defined as:

J λ Að Þ ¼UASλ ΣA
� �

VT
A ð10Þ

where A¼UAΣAV
T
A is the Singular Value Decomposition (SVD) of

A.

3.2. Alternating optimization

The optimization problem (6) involves minimizing a combina-
tion of ℓ1 norm and nuclear norm, which is convex but non-
smooth. Directly solving the objective function as a whole is
intractable. In order to deal with the problem separately, three
slack variables P, E and X are incorporated along with the
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