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a b s t r a c t

Robust principal component analysis (RPCA) is usually used to remove structural error from low rank
matrix. It assumes that the real data matrix has low rank and the error matrix is sparse. A new emerging
method named double nuclear norm-based matrix decomposition (DNMD), which uses a unified low-
rank assumption to characterize the real image data and continuous occlusions, is also applied to recover
images and to model background. This paper presents a method called double nuclear norm-based
robust principal component analysis (DNRPCA) for dealing with the occluded image. It not only assumes
that the real data matrix has low rank, but also supposes the error matrix is sparse in vector space and
each error image is a low-rank matrix, which can not only cope with the structural error but also the
sparse error compared to DNMD. Experiments on removing occlusions from face images and object
detection from monitoring videos demonstrate the advantages of our method compared to the state-of-
the-art approaches.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

As a common tool for high dimensional data processing and
analysis, principal component analysis (PCA) has been widely
applied in the community of pattern recognition, machine learn-
ing and computer vision [1–4]. It desires to extract a low rank
dimensional subspace from the high dimensional data samples
which might be relevant and redundant by some linear transfor-
mation techniques. With the increasing of data dimension, as an
important means to solve the curse of dimensionality, PCA still has
an important theoretical and analytical value, and it is still inves-
tigated and studied by many communities in recent years, such as
2D principal component analysis (2DPCA) [5] and its generalized
N-dimensional principal component analysis (GND-PCA) [12],
kernel principal component analysis [6], locality preserving pro-
jection [7], independent component analysis [9] and Euler prin-
cipal component analysis (EPCA) [10].

Though PCA is effective to recover image from small Gaussian
noise, it is sensitive to large outliers such as block occlusion. Thus,
many robust principal component analysis approaches have been
proposed to deal with the large outliers. L1-norm PCA [11] was
proposed by Ke and Kanade with applying maximum likelihood
estimation to original data and diagonal principal component

analysis with non-greedy L1-norm maximization was proposed by
Yu [8]. And rotational invariant L1-norm PCA utilized Cauchy
robust function and based on maximum correntropy criterion
were presented in [13] and [14] respectively.

Another famous robust principal component analysis approach
named principal component pursuit, which is referred as “PCP” in
this paper, has been recently raised by Wright et al. [15], assuming
that the data matrix is composed of a sparse error matrix and a
low rank clean matrix. Its formulation can be optimized efficiently
by augmented Lagrange multiplier or approximate proximal gra-
dient method. As an important extension of PCP, the low-rank
representation (LRR) [16] was presented to segment subspace
from a union of multiple linear subspaces. LRR represents all col-
umns of the low rank matrix as the linear combinations of the
basis vectors in a dictionary and also assumes that the error matrix
is sparse.

Unlike the approaches mentioned above characterizing the
error term by L1 or L2 norm, He [17] depicts the error with non-
convex M-estimators and Zhang [18] presents a double nuclear
norm-based matrix decomposition (DNMD) method measuring
the error images via nuclear norm. DNMD assumes that all image
vectors form a low-rank matrix and each error image is also a low-
rank image. It can recover the low rank data in image vector space
and remove the low rank error in the image space simultaneously.

On one hand, nuclear norm is more reasonable than L1 or L2
norm for characterizing the structural error in image space, on the
other hand, in the image vectors space, error term is sparse
apparently. The robust principal component analysis approaches
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constraint the error term just by sparsity ignoring the low-rank
structure in image space while DNMD characterizes each error
image via nuclear norm neglecting the sparsity of error term in
image vectors space. Thus, to unify these two properties, we
propose a robust principal component analysis method based on
double nuclear norm (DNRPCA). Like other subspace learning
approaches, DNRPCA also assumes that the raw input data can be
decomposed into a low-rank matrix and an error matrix. But in
this assumption, the error term has to satisfy two constraints:
sparsity in image vectors space and low rank in image space. A
solution of DNRPCA model based on alternating direction method
of multipliers has also been presented to recover the real low rank
data and remove the error image in this paper.

The remainder of the paper is organized as follows. Section 2
introduces some closely related work. Our DNRPCA model is
proposed and solved in Section 3. Comparative experiments with
other methods on different datasets (face images and surveillance
videos) are demonstrated in Section 4. Finally, the conclusion and
discussion are offered in Section 5.

Notations: Let XiARm�n be an image with m� n pixels. Images
matrix X ¼ ½vecðX1Þ;…; vecðXsÞ�ARmn�s denotes observed data,
where the vectorization operator vecð�Þ stacks the columns of an
image into a vector, s is the number of images. X is assumed to be
composed of two matrices D¼ ½vecðD1Þ;…; vecðDsÞ�ARmn�s and
E¼ ½vecðE1Þ;…; vecðEsÞ�ARmn�s, denoting the background images
matrix and foreground errors respectively. And DiARm�n, EiARm�n

represent the corresponding background and object image of the
ith observed image Xi. The nuclear norm of X is denoted as
JX Jn ¼

Pminfm;ng
i ¼ 1 σi, where σi is the ith larger singular value of X.

JX J0 denotes the l0 norm of X, i.e. the number of nonzero ele-
ments in X. The l1 norm of X is represented as JX J1 ¼

P
i;j jXij j and

JX JF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

ijX
2
ij

q
is the Frobenius norm of X.

2. Related works

Many approaches for matrix decomposition have been pro-
posed so far, and we cannot describe all of them here. This section
just introduced two methods of them, PCP and DNMD, which are
very closely related to our DNRPCA model.

2.1. PCP

Given a set of observed samples X1;…;XsARm�n, where some
of them are corrupted, such as be occluded, PCP assumes that the
images matrix X is composed of two matrices D and E, and matrix
D is supposed to have low rank and E is deemed to be sparse. The
PCP model is formulated as

min
D;E

JDJnþλJEJ1; s:t: X ¼DþE; ð1Þ

where the λ is a balance parameter between low rank and sparsity.
Many algorithms can be used to solve this model, such as

accelerated proximal gradient approach, dual approach, and the
methods of augmented Lagrange multipliers [24]. PCP has been
applied in many applications, such as moving object detection,

face recognition and other matrix completion problem, where a
matrix with a fraction of entries missing is required to be
completed.

2.2. DNMD

DNMD uses a unified low-rank assumption to characterize the
real image data and continuous occlusion. It assumes that the
recovered images, after being stacked into image vectors, form a
low-dimensional vector space and the error images in the original
image space are also low rank. The original data XARmn�s can be
divided into two parts DARmn�s and EARmn�s, where D is a low
rank matrix and each column in E is the vectorization of corre-
sponding low rank error image EiARm�n. The decomposition
model of DNMD is given by

min
D;E

JDJnþλ
Xs
i ¼ 1

JEi Jn; s:t: X ¼DþE: ð2Þ

The formulation of DNMD involves only the nuclear norm of
matrix which can be solved by the singular value shrinkage
operator. DNMD shows that nuclear norm is more reasonable than
L1 or L2 norm for characterizing the structural error and it is
effective on removing occlusion from face images and background
modelling [18].

3. Double nuclear norm-based robust PCA

This section first presents the motivation and problem for-
mulation of the double nuclear norm-based robust PCA model
(DNRPCA), and then the algorithm based on the alternating
direction method of multipliers is provided. Finally, some analyses
on the convergence and complexity of the algorithm are given.

3.1. Formulation

Firstly, we give an intuitive impression that low rank hypoth-
esis can better characterize the block occlusion through an
instance. While the left face image in Fig. 1(a) is just mixed with
some Gaussian noises, the one on the right is occluded by block.
Our purpose is to recover the face images by removing the
occlusions. Fig. 1(b) displays the corresponding recovered images
and the error images are presented in Fig. 1(c), where the left is
Gaussian error and the right is structural error. The corresponding
singular values of Gaussian and structural error images are shown
in Table 1, from where we can find the singular value of structural
error falls more faster to zero than that of Gaussian error, which
means fewer components can be applied to characterize the
structural error image. So, for block occlusions, we suppose that
the error image is low rank. Secondly, there are many similarities
between the face images as they belong to the same class. Thus, if
we stack the recovered images into column vectors of a matrix, it
can be assumed to have low rank. Finally, because only a portion of
images are occluded and the covered area is small, it is obvious
that the matrix composed of vectorized error images is sparse.
Therefore, taking into account the above points, to remove the

Fig. 1. Illustration of the low rank structure of occlusion error. (a) Observed images. (b) Recovered images. (c) Error images.
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