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a b s t r a c t

This paper is concerned with the stability analysis of recurrent neural networks with an interval time-
varying delay. A new Lyapunov–Krasovskii functional (LKF) containing some augmented double integral and
triple integral terms is constructed, in which the information of the activation function and the lower bound
of the delay are both fully considered. Then, a free-matrix-based integral inequality is employed to deal with
the derivative of the LKF such that an improved stability criterion is derived. Finally, two numerical
examples are provided to illustrate the effectiveness and the benefit of the proposed stability criterion.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, recurrent neural networks (RNNs) have been
widely used in various fields due to their extensive applications
such as pattern recognition, signal processing, associative mem-
ories and other scientific areas [1,2]. And the key of these appli-
cations with RNNs is that the equilibrium points of the designed
network are stable. As a result, stability analysis of RNNs plays an
important role. On the other hand, as we all know, a time delay
which inevitably exists in many RNNs is usually a cause of oscil-
lation and instability. Therefore, the stability problem of the
delayed neural networks (DNNs) is of a great deal of importance in
both theory and practice, and also has attracted much attention
[4–22]. In the field of stability analysis, many results on this topic
can be classified into the delay-dependent one and delay-
independent one. Since the former considers more information
of the delay and is usually less conservative, much attention has
been put into employing some less conservative delay-dependent
stability conditions.

In delay-dependent stability analysis of system with interval
time-varying delay, we assume that there exists an upper bound of
the delay. When the delay is in the interval from the given lower
bound to the upper bound of delay, the delay system is asymptotic
stable. Based on Lyapunov theory, constructing a suitable Lyapu-
nov–Krasovskii functional (LKF) and estimating its derivative are
two key points to enhance the feasible regions of stability criteria
and reduce the conservatism. For the construction of the LKF, the
simple LKF was firstly employed in DNNs, and rich results are
gotten by that [4–6]. However, as we all know, the stability criteria
are conservative by using the simple LKF since the delay infor-
mation was not taken fully into account. To deal with this problem,
the augmented LKF method was proposed [3] and widely used to
the stability analysis problem of DNNs [7–21]. Furthermore, to
reduce the conservatism, using the delay-decomposition idea [7],
considering more information of the activation functions [8–10],
augmenting the double integral terms [10,11], and introducing the
triple integral terms [11] were employed to construct the LKF.

For estimating the derivative of the LKF, the free weighting
matrix (FWM) approach [12,13], its improved forms [14,15] and
the integral inequality method such as Jensen's inequality [13,15],
Wirtinger-based integral inequality [16,17] are the most popular
methods reported in the literature. The FWM method is once the
best one because of neither the model transformation nor the
cross-term bounding being required. However, with the proposal
of the convex combination approach, which successfully avoids
replacing the delay by its lower or upper bound directly, integral

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2016.04.052
0925-2312/& 2016 Elsevier B.V. All rights reserved.

☆This work was supported in part by the National Natural Science Foundation of
China under Grants 61573325, 61503351, 61210011, and the Hubei Provincial
Natural Science Foundation of China under Grant 2015CFA010.

n Corresponding author at: School of Automation, China University of Geos-
ciences, Wuhan 430074, China.

E-mail address: ckzhang@cug.edu.cn (C.-K. Zhang).

Neurocomputing 205 (2016) 490–497

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.04.052
http://dx.doi.org/10.1016/j.neucom.2016.04.052
http://dx.doi.org/10.1016/j.neucom.2016.04.052
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.04.052&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.04.052&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.04.052&domain=pdf
mailto:ckzhang@cug.edu.cn
http://dx.doi.org/10.1016/j.neucom.2016.04.052


inequality was widely applied due to small amount of calculation
[18,19]. Moreover, since there proposed a newly free-matrix-based
integral inequality, which included the well-known Wirtinger-
based integral inequality as a special case, the less conservative
stability conditions were obtained [20,21].

For RNNs, the problem of delay-dependent stability was investi-
gated in [6]. Noted that some negative semi-definite terms were
ignored and the lower bound of time delay was restricted to be 0,
improved stability conditions were derived following the FWM
approach in [12]. By constructing an augmented LKF that contained
some triple integral terms and using Jensen's inequality combined
with the convex combination method, new conditions were estab-
lished in [13]. In order to take more information about the lower
bound of delay into account, a new LKF containing some new double
integral terms and triple integral terms were introduced in [15]. In
[16], a matrix-based quadratic convex approach was proposed to
investigate the stability of neural networks (NNs) with interval time-
varying delay and some improved conditions were obtained. Very
recently, by using Wirtinger-based integral inequality combined with
the convex combination method, new conditions were obtained in
[17]. As the free-matrix-based integral inequality contains the
Wirtinger-based integral inequality, it can be desired to derive the
improved criteria by using this inequality to estimate the derivative
of the LKFs for the RNNs with interval time-varying delay.

Motivated by the above statement, the problem of stability
analysis for RNNs with time-varying delay is further studied. The
main contributions of this paper are summarized as follows:

(1) Compared with the literature, an augmented LKF with more
general form, not only considering much information of the
activation function but also containing some augmented
double integral and triple integral terms, is constructed.

(2) The free-matrix-based integral inequality, recently developed
in the previous work [28], is used to estimate the derivative of
the LKF such that a less conservative stability criterion is
derived.

The contribution of the above techniques to reduce the conserva-
tism of the criterion is demonstrated through two numerical
examples.

Notations: Throughout this paper, Rn denotes the n-dimen-
sional Euclidean space; Rn�m is the set of all n�m real matrices;
NT and N�1 stand for the transpose and the inverse of the matrix
N, respectively; P40 (Z0) means that P is a real symmetric and
positive-definite (semi-positive-definite) matrix; diagf⋯g denotes
a block-diagonal matrix; I represent the identity matrix; sym-
metric term in a symmetric matrix is denoted by n; and
SymfXg ¼ XþXT .

2. Problem formulation

Consider the following RNN with a time-varying delay:

_zðtÞ ¼ �AzðtÞþ f ðWðzðt�dðtÞÞÞþ JÞ
zðtÞ ¼ϕðtÞ; �d2rtr0

(
ð1Þ

where zðtÞ ¼ ½z1ðtÞ; z2ðtÞ;…; znðtÞ�T ARn is the neuron state vector;
J ¼ ½ J1; J2;…; Jn�T ARn is the constant input vector; f ð�Þ ¼
½ f 1ð�Þ; f 2ð�Þ;⋯; f nð�Þ�T ARn represents the neuron activation func-

tion; ϕðtÞ is the initial condition; A¼ diagfa1; a2;…; ang40 and W

¼ WT
1;W

T
2;…;WT

n

h iT
are the known interconnection weight

matrices; the time delay, d(t), is a continuous differentiable func-
tion satisfying

d1rdðtÞrd2 ð2Þ

j _dðtÞjrμ ð3Þ
where d1,d2 and 0oμo1 are constants. The neuron activation
function f ð�Þ is assumed to satisfy the following assumption.

Assumption 1. The function f ið�Þ in RNN (1) is continuous and
satisfies [23,24]

F �
i r f iðα1Þ� f iðα2Þ

α1�α2
rF þ

i ; i¼ 1;2;…;n ð4Þ

where α1;α2AR, α1aα2, and F �
i and F þ

i are known real scalars.

Based on Assumption 1, we assume that there exists an equi-
librium point zn for RNN (1). By defining xð�Þ ¼ zð�Þ�zn, RNN (1) can
be transformed as

_xðtÞ ¼ �AxðtÞþgðWðxðt�dðtÞÞÞ
xðtÞ ¼φðtÞ; �d2rtr0

(
ð5Þ

where xðtÞ ¼ ½x1ðtÞ; x2ðtÞ;…; xnðtÞ�T ARn is the state vector; φðtÞ ¼ϕ
ðtÞ�zn is the initial condition; the transformed activation function
gðWxð�ÞÞ ¼ f ðWxð�ÞþWznþ JÞ� f ðWznþ JÞ satisfies

F �
i rgiðα1Þ�giðα2Þ

α1�α2
rF þ

i ; gið0Þ ¼ 0; i¼ 1;2;…;n ð6Þ

where α1;α2AR, α1aα2.
If α2 ¼ 0, then we have

F �
i rgiðαÞ

α
rF þ

i ; i¼ 1;2;…;n ð7Þ

To deal with the quadratic single integral and double integral
terms, we introduce Lemmas 1 and 2:

Lemma 1 ( Jensen's inequality Gu et al. [25], Sun et al. [26]). Let ω
be a differentiable signal in ½α;β�-Rn, for positive definite matric
RARn�n, the following inequalities hold:

ðα�βÞ
Z α

β
ωT ðsÞRωðsÞdsZ

Z α

β
ωðsÞds

 !T

R
Z α

β
ωðsÞds

 !
ð8Þ

ðα�βÞ2
2

Z α

β

Z α

s
ωT ðsÞRωðsÞdsdθZ

Z α

β

Z α

s
ωðsÞdsdθ

 !T

R
Z α

β

Z α

s
ωðsÞdsdθ

 !

ð9Þ

ðα�βÞ2
2

Z α

β

Z s

β
ωT ðsÞRωðsÞdsdθZ

Z α

β

Z s

β
ωðsÞdsdθ

 !T

R
Z α

β

Z s

β
ωðsÞdsdθ

 !

ð10Þ
Lemma 2 (Free-matrix-based integral inequality Zeng et al.
[28]). Let x be a differentiable signal in ½α;β�-Rn, for symmetric
matrices RARn�n, X, ZAR3n�3n, and any matrices YAR3n�3n, N1, N2

AR3n�n satisfied

X Y N1

n Z N2

n n R

2
64

3
75Z0

the following inequality holds:

�
Z β

α
_xT ðsÞR _xðsÞdsrϖTΩ̂ϖ ð11Þ

where Ω̂ ¼ ð β�αÞðXþ1
3ZÞþSym N1G1þN2G2f g;G1 ¼ e1�e2;G2 ¼ 2e3�e1�e2;

e1 ¼ ½I 0 0�; e2 ¼ ½0 I 0�; e3 ¼ ½0 0 I�;ϖ ¼ ½xT ðβÞxT ðαÞ 1
β�α

R β
α xT ðsÞds�T :

Remark 1. It is worth mentioning that if we let X ¼N1R
�1NT

1,
Y ¼N1R

�1NT
2, Z ¼N2R

�1NT
2, N1 ¼ 1

β�α �R R 0½ �T and N2 ¼
3

β�α R R �2R½ �T , then the free-matrix-based integral inequality is
written as the Wirtinger-based integral inequality [27]. That
is to say, the Wirtinger-based integral inequality shown to
be more tighter than Jensen's inequality is a special case of the
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