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a b s t r a c t

In this paper, the problem on synchronization is studied for a class of master–slave delayed neural
networks (DNNs) with heterogeneous dimensions. Through designing a reduced-order observer and
choosing an augmented Lyapunov–Krasovskii functional, a delay-dependent stability criterion on the
error system is presented and the synchronization one is formulated in terms of linear matrix
inequalities (LMIs) via parameters’ transformation. Especially, since some novel inequality techniques are
used, those previously ignored information can be reconsidered during the discussion and the con-
servatism can be effectively reduced. Furthermore, the proposed condition can be conveniently pre-
sented and the controller gain can be checked by solving the proposed LMIs. Finally, two numerical
examples are presented to illustrate the presented results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, chaotic synchronization has been extensively
discussed due to its potential applications in many engineering fields,
such as teleoperation control, secure communication, image proces-
sing, and so on. Chaos is a complex nonlinear behavior that can be
observed in many dynamic systems, inwhich different initial states or
random disturbances often lead to different dynamic behaviors. Thus,
since the pioneering works of Pecora and Carroll were reported [1,2],
the synchronization of chaotic systems has received considerable
attention. Especially, artificial neural network models can exhibit
some chaotic behaviors and therefore, the synchronization of chaotic
NNs has become an important issue of scientific research, see the
references [9–31] and therein.

Since neural networks were widely utilized [3–5], then as a
special dynamical systems, the DNNs have been found to exhibit
complex and unpredictable behaviors, such as stable equilibria,
periodic oscillations, bifurcation, and chaotic attractors [6–11]. Then
many works on synchronization have appeared and a large number
of elegant results have been proposed [10–30]. Especially recently, in
[12], by utilizing M-matrix, the adaptive exponential synchronization
in p-th moment was considered for neutral-type DNNs with Mar-
kovian switching. In [13], the exponential synchronization was

studied by virtue of intermittent control and mathematical induction
technique. In [14–16], as for memristor-based DNNs, the exponential
synchronization and non-fragile one have been studied via using
fuzzy theory and observer-based one. The fixed-time synchroniza-
tion of Cohen–Grossberg DNNs was investigated [17], and its con-
vergence time relied on the initial synchronization errors. However
the above results in [12–17] cannot be easily checked. Considering
fuzzy DNNs with Markovian jumping, the synchronization criteria
were obtained in terms of LMIs through dividing delay interval into
two parts [18]. The robust dissipativity-based synchronization was
fully investigated with actuator failures, and a desired fault-tolerant
controller was designed [19]. In [20], based on LMI technique, a non-
fragile procedure was introduced to study master–slave case and the
controller gain fluctuation appeared in a random way. In [21], as for
memristor-based BAM DNNs, some LMI-based conditions were
presented to guarantee the synchronization with the random
impulse. Meanwhile, in order to implement continuous-time DNNs
for simulation or computational purposes, it is important to for-
mulate discrete-time DNNs from the continuous-time ones by using
a discretization technique. Ideally, the discrete-time analogue should
inherit the dynamical behaviors of the continuous-time networks
and maintain the functional similarity to the continuous-time ones.
Unfortunately, they cannot preserve the dynamics of the continuous-
time counterpart even for a small sampling period [22,23]. Thus in
view of discrete-time case, through using saturation control [24] and
stochastic dropouts [25], some delay-dependent synchronization
criteria were obtained in the form of LMIs. Meanwhile, in many
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practical cases, the digital controllers were more efficient than the
continuous ones owing to that they can achieved the synchroniza-
tion only by using the sampled data of the states in both the master
system and slave one at discrete time instants. Thus in [26–31], the
controllers based sampled-data has been presented to study the
master–slave synchronization in DNNs. In [26], a sampled-data
synchronization scheme was developed for distributed parameter
DNNs. The variable sampling control was deeply studied and some
LMI results have been reported [27–29], in which they heavily
depended upon the maximum value of sampling interval. Most
recently, since the event-triggering idea was proven to be more
effective to extend the application area [31], the work [30] has stu-
died the decentralized event-triggered scheme and an integrated
error model was built to couple the scheme and time-varying delay
in a unified framework, inwhich the co-design of the controllers was
given.

Though the methods mentioned above are elegant, there still
exist several points waiting for improvements. Firstly, when the
LKF method was used to tackle the delay-dependence, many
effective techniques have been proposed, such as free-weighting
matrix, Moon's inequality, and convex combination. Yet in [18–30],
when the integral term

R t
t� τ

_xT ðsÞQ _xðsÞds in the derivative of LKF
was dealt with, many useful information still has been ignored.
Recently, the works [37,38] have presented a Wirtinger-based
inequality to tackle the issue on time-delay, which can be more
efficient than those present ones. However, no matter how they
effectively dealt with the derivative of double- or triple-integral
LKF, the time-delay involved was still constant one. As we know,
time-delay is always variable. Thus some novel and improved
techniques need to be put forward to consider this point. Secondly,
as for the master–slave synchronization [10–30], the common
assumptions were that the dimensions of master system and slave
one should be the same or even the forms of two systems were
identical except for the state and initial conditions. Yet from a
practical viewpoint, it is favorable and more meaningful to allow
the dimensions and forms of master and slave systems to be dif-
ferent, i.e., the dimensions of two systems are heterogeneous.

Motivated by the discussions above, in this work, the problem
on master–slave synchronization for DNNs with heterogeneous
dimensions will be deeply investigated. Firstly, an improved Lya-
punov–Krasovskii functional will be constructed and some effec-
tive techniques will be utilized to estimate the LKF derivative more
tightly. Furthermore, the derived criteria are presented in terms of
LMIs and their feasibility can be easily tested by Matlab LMI
Toolbox. Finally, two numerical examples will be presented to
illustrate the efficiency of the derived results.

Notations: Throughout this paper, the term N stands for the set of
positive integers, Rn denotes the n-dimensional Euclidean space, and
Rm�n is the set ofm� n constant matrices; symfXg means the sum of
X and its symmetric matrix, i.e., symfXg ¼ XþXT . The notation X40
(respectively, xZ0) means that the matrix X is a real symmetric
positive-definite (positive semi-definite).

2. Problem formulations

Consider a master–slave system with heterogeneous dimen-
sions where the model of the master system is described by the
following DNNs:

_xðtÞ ¼ �CxðtÞþAf ðxðtÞÞþBf ðxðt�τðtÞÞÞþL;

yðtÞ ¼DxðtÞ;

(
ð1Þ

where xðtÞARs and yðtÞARmn respectively represent the state
vector and output one of the master system. Here xðtÞ ¼
½xT1ðtÞ xT2ðtÞ ⋯ xTnðtÞ�T with xiðtÞARmi ðmiANÞ, Pn

i ¼ 1 mi ¼ s; f ðxð�ÞÞ ¼

½f T1ðx1ð�ÞÞ f T2ðx2ð�ÞÞ ⋯ f Tnðxnð�ÞÞ�T ARs denotes the neuron activation
function with f iðxið�ÞÞARmi ði¼ 1;…;nÞ; L¼ ½LT1 LT2 ⋯ LTn�T ARs is a
constant input vector with LiARmi for i¼ 1;…;n. Furthermore,
yðtÞ ¼ xnðtÞ, i.e., D¼ ½0mn�ðs�mnÞ; Imn �ARmn�s; C ¼ diagðC1;C2;…;CnÞ
40 with Ci ¼ diagðci1; ci2;…; cimi

ÞARmi�mi , and A;B are the con-
stant matrices of the proper dimensions.

The dynamics of the slave system are given as the following
DNNs:

_zðtÞ ¼ �CzðtÞþAgðzðtÞÞþBgðzðt�τðtÞÞÞþuðtÞþLn; ð2Þ
where zðtÞARmn represents the state vector. Here C ¼ diagðc1; c2;
…; cmn Þ40 and A;BARmn�mn ; gðzð�ÞÞARmn denotes the activation
function and u(t) is the control input that will be designed later.

The following assumptions on the systems (1)–(2) are made
throughout this paper.

H1. Here, τðtÞ denotes the interval time-varying delay satisfying

0rτðtÞrτm; μ0r _τðtÞrμm; ð3Þ
and we denote μm ¼ μm�μ0.

H2. There exist the constants σþ
j ;σ�

j ; ϵ�
i ; ϵþ

i , the activation
functions f jð�Þ; gið�Þ in (1)–(2) satisfy the conditions

σ�
j r f jðαÞ� f jðβÞ

α�β
rσþ

j ; 8α;βAR;αaβ; j¼ 1;2;…; s;

ϵ�
i rgiðαÞ�giðβÞ

α�β
rϵþ

i ; 8α;βAR;αaβ; i¼ 1;2;…;mn:

Here we also introduce the denotations Σ ¼ diagðσþ
1 ;⋯;σþ

s Þ,
Σ ¼ diagðσ�

1 ;⋯;σ�
s Þ, and

Σ1 ¼ diag σþ
1 σ

�
1 ;…;σþ

n σ
�
s

� �
; Σ2 ¼ diag

σþ
1 þσ�

1

2
;…;

σþ
s þσ�

s

2

� �
:

ð4Þ

Remark 1. In assumption H1, together with the values of both the
lower and upper bounds on the derivative of τðtÞ, the value of μ0 is
always less than 0 and the one of μm is always greater than 0,
which can make τðtÞ to be bounded and changing in ½0; τm�.

To facilitate the analysis, it is assumed that the state matrices
C ;A;B and the function gð�Þ of (2) are available to controller design.
The goal of this paper is to design the controller u(t) such that the
slave system (2) can asymptotically track the output of the master
system (1), i.e., limt-þ1 JzðtÞ�yðtÞJ ¼ 0 for any initial conditions
xðtÞARs; zðtÞARmn with tA ½�τm;0�.

Now based on the methods in [32–36], an observer with the order
s�mn is first designed for the slave system to estimate the unavail-
able states of the master one. Then an observer-based controller will

be given for the slave system. Let ξðtÞ ¼ ξT1ðtÞ ξT2ðtÞ ⋯ ξTn�1ðtÞ
h iT

A

Rs�mn be the state vector of the reduced-order observer with
ξiðtÞARmi ði¼ 1;…;n�1Þ. For the convenience, we can divide the
matrices C;A;B into the following forms,

C ¼

C1 0 ⋯ 0
0 C2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Cn

2
6664

3
7775; A¼

A11 A12 ⋯ A1n

A21 A22 ⋯ A2n

⋮ ⋮ ⋱ ⋮
An1 An2 ⋯ Ann

2
6664

3
7775;

B¼

B11 B12 ⋯ B1n

B21 B22 ⋯ B2n

⋮ ⋮ ⋱ ⋮
Bn1 Bn2 ⋯ Bnn

2
6664

3
7775;

CiARmi�mi ;

AijARmi�mj ;

BijARmi�mj ;

i; j¼ 1;2;…;n:

ð5Þ

Now denoting ζðtÞ ¼ ½ξT ðtÞ zT ðtÞ�T and letting εðtÞ ¼ ζðtÞ�xðtÞ, one
can easily check that as for DNNs (1) and (2), the master–slave syn-
chronization can be achieved when limt-þ1 JζðtÞ�xðtÞJ ¼
limt-þ1 JεðtÞJ ¼ 0.
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