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a b s t r a c t

This paper investigates the problem of exponential stabilization for a class of nonlinear fuzzy impulsive
systems with time-varying delay. Firstly, the systems are expressed by the extended Takagi–Sugeno (T–S)
fuzzy model. Secondly, the combination of Lyapunov–Krasovskii type functionals and the parallel dis-
tributed compensation (PDC) idea is employed to design a state feedback controller such that the closed-
loop systems are globally exponentially stable. The corresponding sufficient delay-dependent conditions
are derived in terms of linear matrix inequalities (LMIs). Finally, two examples are presented to
demonstrate the effectiveness of the theoretical contribution.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past two decades, issues related to fuzzy-logic control of
nonlinear systems have received considerable attention since fuzzy-
logic control methods have capability of designing and analyzing
nonlinear systems effectively. Among various fuzzy methods, fuzzy-
model-based control is widely investigated and employed in that the
stability analysis and controller synthesis problems of the overall
system can be conducted systematically by using well-established
classical linear systems theory [1–5]. More recently, the stability
analysis and controller synthesis problems of Takagi–Sugeno (T–S)
fuzzy systems have received particular attention [2–17].

It is evident that time delay is a commonly encountered source
of instability and poor performance of systems [18–24]. Stability
criteria can be categorized: delay-dependent stability criteria
[20,21] and delay-independent stability criteria [18,19]. Many
researchers have investigated the delay-related stability of fuzzy
systems [15–21,25–28]. Generally speaking, the latter is more
conservative than the former when time delay is trivial.

In practice, there exist natural phenomena that systems states
might be changed abruptly at certain moments. It is assumed that
these perturbations act instantaneously, i.e., in the form of

impulses [29,30]. Impulsive disturbances can severely degrade
closed-loop system performance and even make a stable system
unstable [31,32]. Over the past few decades, the qualitative
properties of impulsive differential equations have been inten-
sively studied [29,30,33–35]. The development of impulsive fuzzy
differential equations was initiated by [34], and was extended to
impulsive functional differential inclusions in [33]. Meanwhile, the
stability analysis and controller synthesis problems of impulsive
systems have received considerable attention by many research-
ers, e.g., [36–39]. For instance, the authors investigated the pro-
blem of robust decentralized stabilization for a class of large-scale,
time delay, and uncertain impulsive dynamical systems [37].
Several criteria were established for robust stability, robust
asymptotic stability and robust exponential stability of uncertain
impulsive dynamical systems in [38].

Recently, the stability analysis and controller synthesis problems
of T–S fuzzy impulsive systems have been paid considerable
attention [40–43]. In [41], a class of nonlinear fuzzy impulsive
systems was defined by extending the ordinary T–S fuzzy model
and sufficient conditions were derived for global exponential sta-
bility of closed-loop systems. Several criteria for uniform stability
and uniform asymptotic stability of T–S fuzzy time-delay systems
with impulse were proposed in [40]. The problem of robust fuzzy
control for a class of nonlinear fuzzy impulsive systems with time-
varying delay was investigated and sufficient conditions for global
exponential stability of the closed-loop system were proposed in
[42]. In [43], the authors investigated the problem of robust fuzzy

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2016.03.059
0925-2312/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.:þ86 515 88233200.
nn Corresponding author. Tel.:þ86 515 88239915.
E-mail addresses: yujianjiang@126.com (J. Yu), yctcjhb@gmail.com (H. Jiang).

Neurocomputing 203 (2016) 92–101

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.03.059
http://dx.doi.org/10.1016/j.neucom.2016.03.059
http://dx.doi.org/10.1016/j.neucom.2016.03.059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.03.059&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.03.059&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.03.059&domain=pdf
mailto:yujianjiang@126.com
mailto:yctcjhb@gmail.com
http://dx.doi.org/10.1016/j.neucom.2016.03.059


control for a class of nonlinear fuzzy impulsive stochastic systems
with time-varying delays. Moreover, there are some interesting
applications of impulsive control or synchronization of chaotic
systems based on the T–S fuzzy model [32,44,45]. To the best of our
knowledge, however, there are few results on delay-dependent
exponential stabilization of fuzzy impulsive systems with time-
varying delay, which motivates this study. In the design of con-
troller systems, one is interested in both global stability and other
performance properties. In particular, it is expected that the closed-
loop systems converge quickly and guarantee the require perfor-
mance. This drives researchers to study the exponential stability
analysis problem of neural networks [46,47], stochastic systems
[48], and others. The authors in [49] investigated the global expo-
nential stability and global asymptotic stability of neural networks
with impulsive effects and time-varying delays.

In this paper, we investigate the problem of exponential stabi-
lization for a class of nonlinear fuzzy impulsive systems with time-
varying delay by employing Lyapunov–Krasovskii type functionals.
The main contributions of our paper include: (1) Both nominal and
uncertain fuzzy impulsive systems with time-varying delay are
considered by extended the ordinary T–S fuzzy model; (2) The
controllers for the fuzzy impulsive systems with time-varying delay
are proposed by employing the parallel distributed compensation
(PDC) idea; (3) Some conserver delay-dependent conditions in
terms of linear matrix inequalities are derived to guarantee the
global exponential stability of the closed-loop system.

The remainder of the paper is arranged as follows. In Section 2,
a class of nonlinear fuzzy impulsive systems with time-varying
delay is defined by extending the ordinary T–S fuzzy model. The
parallel distributed compensation (PDC) idea is employed to
design a state feedback controller. In Section 3, sufficient delay-
dependent conditions for global exponential stability of the
closed-loop system are derived in terms of linear matrix inequal-
ities (LMIs). The design of a controller for fuzzy impulsive systems
with time-varying delay is also proposed. Then the stability ana-
lysis and controller synthesis results are extended to uncertain
fuzzy impulsive systems with time-varying delay. In Section 4, two
examples are presented to show the effectiveness of the proposed
method. Finally, conclusions are drawn in Section 5.

Notation: Throughout this paper, the superscripts ‘�1’ and ‘T’
stand for the inverse and transpose of a matrix, respectively;
Rþ ¼ ½0;1Þ, N¼ f0;1;2;…g, Nþ ¼ f1;2;…g; Rn denotes n-dimen-
sional Euclidean space; The vector norm of xARn is Euclidean, i.e.,
x¼

ffiffiffiffiffiffiffi
xTx

p
; Rn�m is the set of all n�m real matrices; I is an

appropriately dimensioned identity matrix; For PARn�n, λminðPÞ
(λmaxðPÞ) denotes the smallest (largest) eigenvalue of P. For real
symmetric matrices X and Y, the notation XZY (respectively,
X4Y) means that the matrix X–Y is positive semi-definite
(respectively, positive definite).

2. Problem formulation and preliminaries

Consider the following nonlinear system with time-varying
delay represented by a T–S fuzzy model, which can be called a
nonlinear fuzzy impulsive system with time-varying delay.

Plant Rule i

IF θ1ðtÞ is Mi
1 and;…; and θgðtÞ is Mi

g

THEN _xðtÞ ¼ Ai1xðtÞþAi2xðt�τðtÞÞþBiuðtÞ; tatk;

ΔxðtkÞ ¼ GkixðtkÞ; kANþ ;

xðtÞ ¼ϕðtÞ; tA ½t0�τ0; t0�;
i¼ 1;2;…; q; ð1Þ

where Mj
i is the jth fuzzy set in ith rule, q is the number of rules,

θðtÞ ¼ ½θ1ðtÞ;θ2ðtÞ;…;θgðtÞ�T is the premise variable, xðtÞARn is the

state vector, u(t) is the control input, Ai1ARn�n, Ai2ARn�n and Bi

ARn�m are constant matrices. τðtÞ is the unknown bounded time-
varying delay in the state and there exist two real numbers τ0 and
τ1 such that 0rτðtÞrτ0, _τðtÞrτ1o1; this constraint is also
imposed in [18] for standard fuzzy time-delay systems. Define
ΔxðtkÞ ¼ xðtþk Þ�xðt�k Þ, xðtþk Þ ¼ limt-t þ

k
xðtÞ and xðt�k Þ ¼ limt-t �k

xðtÞ.
Without loss of generality, it is assumed that limt-t �k

xðtÞ ¼ xðtkÞ,
which means that the solution x(t) is left continuous at time tk. The
impulsive matrices GkiARn�n are constant matrices. The impulsive
time instants tk satisfy 0rt0ot1ot2o⋯otk�1otko⋯ and
limk-1tk ¼ þ1. We assume that there exists a constant L41,
such that tk�tk�1ZLτ0; this constraint was also considered in
[37] for large-scale uncertain impulsive dynamical systems with
time delay.

In (1), if uðtÞ ¼ 0, then the nonlinear system reduces to an
unforced fuzzy impulsive system with time-varying delay. In (1), if
Gki ¼ 0, kANþ , i¼ 1;2;…; q, then the nonlinear system reduces to
a typical continuous T–S time-delay fuzzy model. The stability of
this T–S model has been intensively investigated [18–21,25]. And if
τðtÞ ¼ 0, then the nonlinear system reduces to a fuzzy impulsive
system. The stability of this T–S model was investigated in [41]. In
(1), if τðtÞ ¼ 0, Gki ¼ 0, kANþ , i¼ 1;2;…; q, then the nonlinear
system reduces to a typical continuous T–S fuzzy model. The sta-
bility of this T–S model has been intensively investigated [2,5].

Using the fuzzy inference method with singleton fuzzification,
product inference, and center average defuzzification, the overall
fuzzy model has the form as below,

_xðtÞ ¼
Xq
i ¼ 1

hiðθðtÞÞ½Ai1xðtÞþAi2xðt�τðtÞÞþBiuðtÞ�; tatk;

ΔxðtkÞ ¼
Xq
i ¼ 1

hiðθðtkÞÞGkixðtkÞ; kANþ ; ð2Þ

where

hiðθðtÞÞ ¼
wiðθðtÞÞPq

i ¼ 1 wiðθðtÞÞ
; wiðθðtÞÞ ¼ ∏

g

j ¼ 1
Mi

jðθjðtÞÞ:

We assume that wiðθðtÞÞZ0 and
Pq

i ¼ 1 wiðθðtÞÞ40. It is clear
that

hiðθðtÞÞZ0;
Xq
i ¼ 1

hiðθðtÞÞ ¼ 1:

The control objective is to design a state feedback fuzzy con-
troller such that the closed-loop system is globally exponentially
stable, that is to say, there exists M, γ40 such that

JxðtÞJrMϕ0e
� γðt� t0Þ-0; t-þ1; ð3Þ

where ϕ0 ¼ supt0 � τ0 r tr t0 JϕðtÞJ .
Following the PDC idea, the state feedback fuzzy controller is

designed as follows,
Plant Rule i

IF θ1ðtÞ is Mi
1 and;…; and θgðtÞ is Mi

g

THEN uðtÞ ¼ �KixðtÞ;
i¼ 1;2;…; q; ð4Þ

where KiARm�n; i¼ 1;2;…; q, are constant control gains to be
determined later.

By using the fuzzy inference method with singleton fuzzifica-
tion, product inference, and center average defuzzification, the
overall fuzzy regulator is represented by

uðtÞ ¼ �
Xq
i ¼ 1

hiðθðtÞÞKixðtÞ: ð5Þ
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