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a b s t r a c t

We consider the problem of sparse subspace learning for data classification and face recognition. New
approaches called lα-regularization-based sparse locality preserving projection (α-SLPP) and structural
sparse locality preserving projection (SSLPP) are proposed by incorporating theories of sparse repre-
sentation and structural sparse regularization into spectral embedding. The proposed methods can
efficiently exploit the local geometric information of the data. Also, by inducing sparsity, they facilitate
the interpretation of the projection results and the detection of more discriminating features for clas-
sification and recognition. In addition, α-SLPP induces sparsity by using non-convex lα-norm regularizer,
which is much closer to l0-norm. SSLPP derives a more organized sparse pattern through structural
sparse regularization, and thus overcomes the problem that merely decreasing the cardinality may not be
enough in certain situations. We formulate the sparse subspace learning problem as feasible optimiza-
tion problems and present efficient methods to solve them. Experiments in data classification, face
recognition, and pixel-corrupted face recognition are carried out to verify the feasibility and effectiveness
of the proposed approaches.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction is an important issue in machine
learning. It focuses on exploring subspaces that best preserve the
information of the original data. Actually, most signal data, such as
images, texts, and sounds are high-dimensional, which are usually
redundant and may degrade the performance of pattern classifiers.
For such cases, dimensionality reduction can be a useful approach
to map the high-dimensional data into low-dimensional sub-
spaces, yet retain most of the intrinsic information content in the
original data. This facilitates data manipulation and visualization.
So far, dimensionality reduction has found wide applications in
many fields, such as artificial intelligence, data mining, and bio-
medical science [1–6].

Among the efficient dimensionality reduction methods, prin-
cipal component analysis (PCA) [7] is one of the most popular. It
projects the original data into a subspace spanned by the eigen-
vectors corresponding to the leading eigenvalues of the data
covariance matrix. In recent years, numbers of researches have
shown that the data resource (e.g., face images) may reside on a

nonlinear submanifold embedded in the original high-
dimensional space [8]. In this case, PCA and other global meth-
ods may suffer deviation in subspace learning because they com-
pute the global Euclidean distances between data samples and
cannot explore nonlinear features.

To explore the nonlinear features inhered in data, many
approaches have been developed, including kernel-based meth-
ods, such as kernel principal component analysis (KPCA) [9], ker-
nel Fisher discriminant analysis (KFDA) [10], and manifold-
learning-based nonlinear methods, such as locally linear embed-
ding (LLE) [11], isometric feature mapping (ISOMAP) [12], Lapla-
cian eigenmaps (LE) [13], maximum variance unfolding (MVU)
[14,15], and local tangent space alignment (LTSA) [16,17]. However,
due to the implicity of the nonlinear map, these manifold learning
approaches usually cannot readily yield the test samples' images in
the embedding subspaces, in terms of the low-dimensional
embedding results of the training data. This is referred to as
“out-of-sample” problem [18]. Locality preserving projections
(LPP) [19], as an efficient linear approach to solve this problem,
preserves the local geometric structure of the data and approx-
imates the eigenfunction of the Laplace Beltrami operator [13].
Data samples can then be readily mapped into the embedding
subspace, with the nonlinear characters of the data structure well
detected.
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Observe that a common feature of the linear approaches men-
tioned above is that the embedding results (i.e., low-dimensional
projective data) linearly combine all the original data variables. So it
is difficult to interpret the results that which variables or features
play more important roles in feature extraction, especially when the
number of the data variables is very large [20]. Actually, the inter-
pretation of the projection results is of much importance especially
when the variables have physical meanings in many applications
(e.g., gene representation, face recognition). To facilitate inter-
pretation, there are several ways such as the rotation technique
used in [21] and the simple component method presented in [22],
but the most popular way is to incorporate sparsity into dimen-
sionality reduction, i.e., sparse subspace learning approaches. These
methods explore sparse subspaces, whose basis vectors (i.e., also
named as “loading vectors” [20]) are with few nonzero elements.
Thus, the sparse subspace learning approaches can explicitly lead to
sparse loadings and the zero-loading variables contribute nothing
to the low-dimensional representations. This provides a way to
interpret the low-dimensional results by finding features that lin-
early combine a small set of variables.

Actually, the sparse subspace learning problem has seen a surge
of interests in recent years. Several sparse subspace learning
approaches have been developed by taking advantage of the sparse
representation theory [23–26]. For example, sparse PCA algorithm
(SPCA) [27,28] regularizes the principle components by l1-norm and
is efficiently solved by least angle regression (LARS) [29]. Later, the
hard cardinality constraint of SPCA was relaxed in [30]. Then, a
spectral bounds framework for sparse subspace learning was pro-
posed in [31]. And a unified sparse subspace learning (USSL)
method for getting sparse projections in a regression framework
was developed by [32]. Moreover, a number of researches incor-
porating sparsity into locality preserving analysis have been con-
ducted, such as sparse locality preserving embedding (SLPE)
method introduced in [33], the research of discriminant locality
preserving projections based on l1-norm maximization (DLPP-L1)
[34], the regression analysis of sparse locality preserving projection
(spLPP) conducted in [35], and sparse local discriminant projections
(SLDP) approach proposed in [36].

However, these sparse subspace learning algorithms all use l1-
regularization to induce sparsity due to the fact that l1-norm is the
convex surrogate of l0-norm. Actually, recent studies have shown
the advantages of using concave penalties in addressing sparsity
problems, e.g., lα ð0oαo1Þ quasi-norms, which are much closer
to l0-norm and can induce a more aggressive penalization, espe-
cially when dealing with unregularized problems [37–39]. To our
knowledge, there have been few lα-regularization-based sparse
subspace learning algorithms that incorporate the exploration of
local geometric information inhered in data with non-convex
sparse subspace learning. The purpose of this paper is to present
some results in this direction. In particular, we will propose an
lα-regularization-based sparse locality preserving projection
(α-SLPP) method, which is based on the locality preserving pro-
jection approach [19] with both “locality” and “sparsity” taken into
account, and can be efficiently solved in a regression framework.
To be specific, we apply the α-SLPP method by implementing
successively the projection learning and lα-regularization-based
sparse subspace learning steps. We also present feasible approa-
ches to solve the related optimization problem. The resulting
sparse subspaces can efficiently exploit the nonlinear characters of
the data structure and is also of much help in interpreting the
projection results.

Another focus of our study is “sparse pattern”. In many cases, it
may not be enough to merely decrease the cardinality (namely, the
number of nonzero elements) of the considered vectors, because
the interrelation and structure information of the variables are
also very important. For example, in face recognition, variables

localized on specific positions in face images are naturally related
to each other, and thus sets of pixels form small convex regions in
face images. In genomics, factors explaining the gene expression
patterns are expected to involve fewer other specific genes or
groups of genes, in terms of biological pathways or crowds of
genes that are neighbors in the protein–protein interaction net-
work. For such cases, a plain l1-norm or other lα-norm regularizers
will fail to encode these spatially local constraints [40].

Due to the above considerations, we further present a struc-
tural sparse locality preserving projection (SSLPP) method, which
takes into account both “locality” and “structural sparsity”. Unlike
the structured sparse PCA (SSPCA) method [41] that preserves the
global Euclidean structure of the data, SSLPP considers the local
geometric information. So it can better explore the nonlinear
characters of the data structure. In addition, by taking advantage
of the structural-sparsity induced norms that analyzed recently in
[40], SSLPP can derive structural sparse subspaces by imposing
structural sparse constraints on the objective function. As a result,
the obtained subspaces are not merely with reduced cardinalities,
but also exhibit structural sparse patterns that characterize the
interrelation and structure information of the variables. This
enables SSLPP to find more discriminating variables or groups of
variables.

To verify our approaches, we carry out experiments in data
classification, face recognition, and pixel-corrupted face recogni-
tion. The main contributions of our work are as follows:

(1) α-SLPP and SSLPP take into account both “locality” and
“sparsity”. This is different from many existing sparse sub-
space learning methods that preserve the global Euclidean
structure of the data. As a result, the present methods can
efficiently exploit the nonlinear characters inhered in the data
structure. Also, they can facilitate the interpretation of the
projection results.

(2) α-SLPP applies the non-convex lα-regularizations in sparse
subspace learning process, which is different frommost sparse
subspace learning methods that use l1-regularizations. Actu-
ally, a number of recent researches have demonstrated that
lα ð0oαo1Þ quasi-norms are much closer to l0-norm and can
penalize more aggressively for small coefficients.

(3) SSLPP induces structural sparsity by taking the interrelation
and structure information of the variables into account. This
differs from most sparse subspace learning methods that
merely decrease the cardinality of the projection vectors. As a
result, SSLPP can achieve better results in cases where vari-
ables share interrelations with each other.

The paper is organized as follows. Section 2 reviews some
existing dimensionality reduction methods and useful pre-
liminaries. Sections 3 and 4 present the α-SLPP and SSLPP meth-
ods, respectively. A discussion about these methods is conducted
in Section 5, followed by several experiments included in Section
6. Finally, we summarize in Section 7.

2. Related works

In this section, we give a brief introduction of the dimensionality
reduction methods that are related to our work, and present some
useful preliminaries that will be used in the following discussion.

Let the data matrix be given as X ¼ ½x1; x2;…; xm�ARn�m, with
columns xi's as the training samples for i¼ 1;…;m.1 The problem

1 It is possible that n4m. For example, in face recognition, the original image
space dimensionality may be much larger than the amount of the training samples.
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