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a b s t r a c t

In this paper, finite-time lag synchronization of time-varying delayed complex networks is investigated.
By designing a periodically intermittent feedback controller and adjusting periodically intermittent
control strengths with the updated laws in two parts respectively, we achieve finite-time lag synchro-
nization between two time-varying delayed complex networks. In addition, based on the same finite-
time stability theory and the same sliding mode control, we ensure that the trajectory of error system
converges to a chosen sliding surface within finite time and remains on it forever. Finally, two examples
are given to demonstrate the effectiveness and correctness of the theoretical results obtained here.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, chaos synchronization has its potential
applications in various fields [1–4]. Later, some controllers can be
added to complex networks and then force the state variables of
complex networks to follow the dynamical behavior we desire.
Since the pioneering work was made by Pecora and Carroll [5], the
problem of synchronization and control has been extensively
studied in its potential engineering applications from secure
communication to information processing [6–8]. Accordingly,
various control methods are proposed to solve some problems of
synchronization between complex networks, such as adaptive
control [9–12], nonlinear feedback control [13,14], sliding mode
control [15,16], and descriptor model transformation method [17].

In real-world complex networks, time-varying delays una-
voidably exist in neural processing in implementation of complex
networks, thus, increasing the difficulties to prove the theorem.

Therefore, many existing works of time-varying delays have been
investigated [18–21]. It has also been discovered that time delay
coupling has great influence on the behavior of dynamical systems
[22–24]. Therefore, it is important to study the linkage between
the nodes in the network which is composed of non-delay and
delay coupling.

Sliding mode control is more robust in the process of lag syn-
chronization, and, on the basis of the controllers and the coupling
strengths with update laws, the robust sliding mode control is
designed to guarantee the existence of the sliding motion. Fur-
thermore, compared with continuous control methods, inter-
mittent control is more efficient because the system output is
measured intermittently rather than continuously. In view of those
merits, most of existing complex networks and chaotic nonlinear
systems are investigated by means of intermittent control or
sliding mode control [25,26]. In [27], a class of Cohen–Grossberg
complex networks with time-varying delays is studied through
designing a periodically intermittent controller. Cai et al. [28]
investigate the problem of synchronization in complex dynamical
networks with time-varying delays. In [29], exponential lag syn-
chronization for delayed fuzzy cellular neural networks via peri-
odically intermittent control is investigated. In [30], a robust
adaptive sliding mode controller (RASMC) is proposed to realize
chaos synchronization between two different chaotic systems with
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uncertainties, external disturbances and fully unknown para-
meters. From the above analysis, finite-time control technique
[31–33] are imposed in the previous existing papers concerning
periodically intermittent control, which is useful in real applica-
tions. As is known to all, there are few papers with regard to the
finite-time lag synchronization for complex networks with time-
varying delay and time-varying delay coupling by applying peri-
odically intermittent control and sliding mode control.

Motivated by the above discussion, in our paper, a robust
sliding mode controller is designed to synchronize two chaotic
systems, in the process of lag synchronization, together with
periodically intermittent feedback controller and periodically
intermittent control strengths with the updated laws, respectively,
we can achieve finite-time lag synchronization.

The rest of this paper is organized as follows. In Section 2, a
general time-varying delayed dynamical system is introduced and
some mathematical preliminaries used in this paper are given. In
Section 3, finite-time lag synchronization of time-varying delayed
complex networks is studied by using the periodically intermittent
feedback controller and periodically intermittent control strengths
with the updated laws. In Section 3.2, two examples are given to
illustrate the analytical results obtained here. Finally, some con-
clusions are drawn in Section 4.

2. Problem description and preliminaries

In this paper, we consider a class of time-varying delayed
complex networks each consisting of N nonlinearly coupled
identical nodes, with each being an n-dimensional dynamical
system, respectively.

The drive networks are characterized by

_xi ¼ f i t; xi; xi t�τ1 tð Þð Þð Þþ
XN
j ¼ 1

bijhj xj
� �þXN

j ¼ 1

cijgj xj t�τ2 tð Þð Þ� �
;

i¼ 1;2;…;N; ð1Þ

or in a compact form:

_x ¼ f t; x; x t�τ1 tð Þð Þð ÞþBh xð ÞþCg x t�τ2 tð Þð Þð Þ; ð2Þ

where xi tð Þ ¼ xi1 tð Þ; xi2 tð Þ;…; xin tð Þð ÞT ARn are the state vectors of the
ith node, x tð Þ ¼ x1 tð Þ; x2 tð Þ;…; xN tð Þð ÞT ARnN denotes the state vector,
f t; x; x t�τ1 tð Þð Þð Þ ¼ f 1 t; x1; x1 t�τ1 tð Þð Þð Þ; f 2 t; x2;ð�

x2 t�τ1 tð Þð ÞÞ;…; f N
t; xN ; xN t�τ1 tð Þð Þð ÞÞT : R� RnN � RnN-RnN is a smooth nonlinear
function, τ1 tð Þ; τ2 tð Þ are the time delays. h xð Þ ¼ h1 x1ð Þ;h2 x2ð Þ;…;ð hN
xNð ÞÞT ARnN and g xð Þ ¼ g1 x1ð Þ; g2 x2ð Þ;…; gN xNð ÞÞT ARnN

�
are the

inner connecting functions in each node. While B, CARnN�nN are the
weight configuration matrices. If there is a connection from node i to
node j ja ið Þ, then the coupling bija0, cija0; otherwise, bij ¼
cij ¼ 0 j¼ ið Þ, and bii ¼ �PN

j ¼ 1;ja i bij; cii ¼ �PN
j ¼ 1;ja i cij.

Throughout this paper, we have the following assumptions,
lemmas and definition.

Assumption 1. For the vector valued function f t; x tð Þ; x t�τ1 tð Þð Þð Þ,
assume that there exist positive constants α40, β40 such that f
satisfies the semi-Lipschitz condition

y tð Þ�x tð Þð ÞT f t; y tð Þ; y t�τ1 tð Þð Þð Þ� f t; x tð Þ; x t�τ1 tð Þð Þð Þð Þ

rα y tð Þ�x tð Þð ÞT y tð Þ�x tð Þð Þþβ y t�τ1 tð Þð Þð

�x t�τ1 tð Þð ÞÞT y t�τ1 tð Þð Þ�x t�τ1 tð Þð Þð Þ;
for all x; yARnN and tZ0.

Assumption 2. The time-varying delays τk tð Þ k¼ 1;2ð Þ are differ-
ential functions with

0r _τk tð Þrτkr1;

where τk k¼ 1;2ð Þ are constants.

Assumption 3. Functions h �ð Þ and g �ð Þ are Lipschitz, that is, there
exist non-negative constants lh; lg for all x; yARnN such that

Jh xð Þ�h yð ÞJr lh Jx�yJ ; Jg xð Þ�g yð ÞJr lg Jx�yJ :
Lemma 1 (Tang 34). Assume that a derivable, positive-definite
function V tð Þ satisfies the following inequality:

_V tð Þr�βVη tð Þ; 8 tZt0; V t0ð ÞZ0;

where β40;0oηo1 are two constants. Then, for any given t0;V tð Þ
satisfies the following inequality:

V1�η tð ÞrV1�η t0ð Þ�β 1�η
� �

t�t0ð Þ; t0rtrt1;

and

V tð Þ � 0; 8 tZt1;

with t1 given by

t1 ¼ t0þ
V1�η t0ð Þ
β 1�η
� � :

Lemma 2 (Mei et al. 35). Suppose that function V tð Þ is continuous
and non-negative when tA ½0; þ1Þ and satisfies the following con-
ditions:

_V ðtÞr�λVηðtÞ; tA ½lT ; lTþh�;
_V tð Þr0; tA ½lTþh; lTþTÞ

;

(

where λ40; T40;0oη; ho1; lAN¼ f0;1;…g, then the following
inequality holds:

V1�η tð ÞrV1�η 0ð Þ�λh 1�η
� �

t;0rtrTn;

for the constant Tn is the setting time.

Lemma 3 (Boyd et al. 36). Given any real matrices Σ1, Σ2, Σ3 of
appropriate dimensions and a scalar ε40, such that 0oΣ3 ¼ΣT

3 .
Then the following inequality holds:

ΣT
1Σ2þΣT

2Σ1rεΣT
1Σ3Σ2þε�1ΣT

2Σ
�1
3 Σ1:

Lemma 4 (Jing et al. 37). For x1; x2; x3; x4ARnN and 0oqo2,
0opr1, the following inequalities hold:

Jx1 Jqþ Jx2 JqZ Jx1 J2þ Jx2 J2
� �q=2

;

Jx1 Jpþ Jx2 Jpþ Jx3 Jpþ Jx4 JpZ Jx1 J2þ Jx2 J2þ Jx3 J2þ Jx4 J2
� �p

:

Definition 1. The master system and the slave system are said to
be lag synchronization in finite time if there exists a constant T40
such that

lim
t-T

Je tð ÞJ ¼ lim
t-T

Jy tð Þ�x t�θ
� �

J ¼ 0 and Je tð ÞJ ¼ 0 if t4T ;

where θ is a time-delayed positive constant.

3. Finite-time lag synchronization

3.1. Time-varying delayed networks via periodically intermittent
feedback control and sliding mode control

In this section, we design a periodically intermittent feedback
controller and a robust sliding mode controller which are capable
of making the trajectory of error system fall on the designated
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