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a b s t r a c t

Building a computational model for how the visual cortex identifies objects is a problem that has
attracted much attention over the years. Generally, the interest has been in creating models that are
translation, rotation, and luminance invariant. In this paper, we utilize the philosophy of Hough Trans-
form to create a model for detecting straight lines under conditions of discontinuity and noise. A neural
network that can learn to perform a Hough Transform-like computation in an unsupervised manner is
the main takeaway from this work. Performance of the network when presented with straight lines is
compared with that of human subjects. Optical illusions like the Poggendorff illusion could potentially
find an explanation in the framework of our model.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The human visual system is vastly superior to man-made vision
systems in its ability to identify objects. Building a model for how
the visual cortex identifies different objects is a problem that has
attracted much attention over the years. Both top-down and
bottom-up [1,42,4] approaches have been proposed towards this
end. Top-down models start at a high-level representation of the
incoming visual input, while bottom-up models start with simple
features within the input and then move to more complex
features.

Oriented lines are one of the first features detected by the
visual cortex in a bottom-up approach, see [18,19]. In this paper,
we utilize the philosophy of the Hough Transform to explain how
the primary visual cortex could possibly detect straight lines. We
describe in detail a neural model that can learn a Hough
Transform-like structure in an unsupervised manner. Our focus is
on the learning principles and patterns of connectivity of the
network of artificial neurons, without getting into creating a
detailed biologically realistic network like in [33]. Experiments
involving human subjects that add support to our hypothesis are
also outlined.

The Hough Transform is a popular feature detection technique
in computer vision applications, see [32,7,39]. The Hough domain,
when used to detect straight lines, is characterized by two para-
meters: (1) the orientation of the line and (2) the shortest distance
from the origin to the line, Fig. 1a. The underlying parametric
transformation from Cartesian coordinates is represented by the
following equation:

ρ¼ x cos ðθÞþy sin ðθÞ ð1Þ
A straight line in the Cartesian domain is thus represented by a

single ρ, θ point in the Hough domain.
Practical implementation of the Hough Transform algorithm

relies on an accumulator array A(ρ,θ) with all possible orienta-
tions and distances. The parameters of the line are obtained by
looking at the ρ and θ that reflect the maximum increments. The
transform is insensitive to clutter and partial occlusion, as we rely
on a voting process to determine the parameters of the line.

Neural networks that can detect straight lines have appeared in
literature. Ref. [34] discusses a neural network structure for
detecting straight lines of various orientations. However, no
learning happens in the network. The network replicates input
lines during detection, and no accumulation is involved. A spiking
neural network model that implements the Hough Transform is
discussed in [43]. Once again, no learning is involved as the
weights for the network connections are derived directly from the
Hough Transform formulation.

A neural network capable of achieving a Hough Transform
parameterization is discussed in [2]; however, the accumulator
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array concept is not utilized and the network needs to search for
the weight vectors representing straight lines over multiple
iterations, every time. By comparison, after training, our network
detects the lines in a two-step computation. Ref. [28] also dis-
cusses a neural network for learning the Hough Transform para-
meter space. Their training data includes parameter values and
input image values, and the network is trained using back-
propagation. Our network is unsupervised, and uses only the
incoming input image as training data. The problem of finding the
maxima in a Hough Transform parameter space using biologically
inspired ideas as opposed to computing the Hough Transform
itself is addressed in [5].

Neural activity models that lead to orientation-filter like char-
acteristics have also appeared in the literature previously. For
example, learning a sparse code for images as a model for neural
activity is discussed in [36,9]. Predictive coding as an explanation
for visual processing in the cortex is discussed in [38]. Information
maximization as a goal of sensory coding is discussed in [3,31,30].
A self-organizing map architecture capable of extracting features
similar to that extracted in the early stages of visual processing is
discussed in [25].

Our network differs from previous networks in that we explain
not only how neurons can learn to be orientation sensitive, but
also how the neurons in subsequent layers can pool information
from orientation sensitive cells and learn to detect entire lines
even in the presence of discontinuity and noise. Orientation sen-
sitivity becomes evident in two aspects of our network after
training: (1) In the connections developed by neurons in the same
layer and (2) in connections between neurons in different layers.
The former contributes to an associative memory like behavior
[26,27], and a derivation of our learning rule that enables it is
discussed in our work [24].

The latter demonstrates itself in the receptive fields of neurons
in the receiving layer. This in turn causes a single neuron or a small
group of neurons in the later layer to represent an entire line in
the previous layer, much like a mapping from Cartesian space to
the Hough Space. The idea of pooling of neuronal outputs in
subsequent layers has been explored previously [29,12]. Further,
the local nature of connections employed by our network leads to
a topological mapping of data between subsequent layers—that is,
neighboring lines in the input space would be represented by
neighboring neurons in our network. Local connections between
neurons and topological mapping are features that are present in
the cortex as well.

After training, the computation done by our network is com-
parable to that of the standard model of object recognition [40]. In
the standard model, a battery of filters is fixed as S1 cells, and their
outputs are combined in C1 cells. After training, the receptive
fields of our network neurons become Gabor-like, like those of S1
cells, while the winner-neuron computation performed by our
network becomes a computation comparable to that of a C1 cell
operation.

Parallels may be drawn between our network architecture and
that of Boltzmann/Restricted-Boltzmann machines [16,17]. How-
ever, the learning algorithms are very different—for Boltzmann
machines, the parameter of interest is the global energy of the
network. In our network, the interest of the learning rule is in the
normalization of incoming weights to individual neurons. Boltz-
mann machines aim to model the input distribution, while our
network learns input features and pool them, retaining spatial
relationships.

It is well established from experiments by Hubel and Wiesel,
see [18,19], that the primary visual cortex contains cells that are
sensitive to the orientation of the visual stimuli. It is further
known that the orientation sensitive cells aggregate into columns
called orientation columns, and that the sensitivity of the columns
themselves vary in a sequential manner. We also know that the
cells of the visual cortex are organized into retinotopic maps. That
is, neighboring areas in the visual fields map to neighboring areas
in the cortex itself [20–23]. Parallels may thus be drawn between
architectural features of Hubel and Wiesel's ‘ice-cube model’ of the
cortex and that of the accumulator array.

An accumulator like structure could potentially explain the
phenomenon of log polar transformation observed in the cortex
[41,6]. For this discussion, assume that the center of an input
image acts as the origin, and that the origin corresponds to the
fovea. Suppose there is a straight line in the input image. Every
point along that line will increment a set of cells in the accumu-
lator array, and a maximum is obtained in a single cell or set of
cells. The cell or group of cells with the maximum value would
indicate the position, or the distance of the line from the origin, ρ.

Now consider a particular point p in the input image. Let the
point be at a distance d from the origin. Any line which passes
through p will have a ρ which is less than or equal to d, i.e., ρrd.
Since p will contribute to the accumulator array every time a line
passes through p, the cells excited by point p will indicate lines
with ρ from 0 to d. That is, p should excite a total of d number of
cells in the accumulator array. Since a point closer to the origin
will have a d that is smaller than that of a point which is farther

Fig. 1. Parameters of a straight line in the Hough space.
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