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a b s t r a c t

Measuring the distribution of major brain tissues, including the gray matter, white matter and cere-
brospinal fluid (CSF), using magnetic resonance imaging (MRI) has attracted extensive research efforts.
Many brain MRI image segmentation methods in the literature are based on the Gaussian mixture model
(GMM), which however is not strictly followed due to the intrinsic complex nature of MRI data and may
lead to less accurate results. In this paper, we introduce the variational Bayes inference to brain MRI
image segmentation, and thus propose a novel segmentation algorithm based on learning a cohort of
local variational Gaussian mixture (LVGM) models. By assuming all Gaussian parameters to be random
variables, the LVGM model has more flexibility than GMM in characterizing the complexity of brain voxel
distributions. To alleviate the impact of bias field, we train each LVGM model on a sampled small data
volume and linearly combine the trained models to classify each brain voxel. We also construct a co-
registered probabilistic brain atlas for each MRI image to incorporate the prior knowledge about brain
anatomy into the segmentation process. The proposed LVGM learning algorithm has been evaluated
against five state-of-the-art brain MRI image segmentation methods on both synthetic and clinical data.
Our results suggest that the LVGM algorithm can segment brain MRI images more effectively and provide
more precise distribution of major brain tissues.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Precisely measuring the distribution of major brain tissues,
including the gray matter, white matter and cerebrospinal fluid
(CSF), is an essential step in both clinical practices and neu-
roscience research [1]. Magnetic resonance imaging (MRI) can
provide high spatial resolution of anatomical details and unique
contrast between soft tissues, and hence is suitable for this task
[2]. The enormous brain MRI images produced globally, however,
are currently analysed almost entirely through visual inspection
on a slice-by-slice basis. This requires a high degree of skills and
concentration, and is time-consuming, expensive and prone to
operator bias. Therefore, automated delineation of major brain
tissues using MRI that would enable doctors and researchers to
bypass the above-mentioned issues has attracted extensive
attentions over the past decade. As a result, a large number of
brain MRI image segmentation algorithms have been proposed in
the literature [3–5]. Among them, those based on brain atlases and
statistical models are the most popular ones.

1.1. Related work

Conventional approaches to brain MRI image segmentation are
atlas-based joint registration-comparison [6–8]. A brain atlas is
composed of serial sections along different anatomical planes of
the human brain, where each relevant brain structure is assigned a
number of coordinates to define its volume [9]. Usually, atlas-
based approaches first register a brain atlas with the brain MRI
image to be segmented and then map major brain structures from
the atlas to the image. Although straightforward and easy to
implement, such approaches are often less accurate due to the
inevitable registration inaccuracy and normal anatomical varia-
tions across subjects.

Statistical brain MRI image segmentation can be traced back to
the work done by Cline at al. [10]. Most statistical approaches
nowadays are based on the Gaussian mixture model (GMM), in
which the gray level distribution of brain voxels from one tissue
type is assumed to be Gaussian and the prior probability of
belonging to that tissue gives the mixing weight of the Gaussian
component [11–17]. Once the statistical parameters in GMM are
estimated according to the maximum likelihood (ML) principle by
maximizing the likelihood of the observed MRI image, the class
label of each voxel can be predicted by applying the voxel value to
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a naive Bayes classifier [18–20]. Wells et al. [12] applied the
expectation-maximization (EM) algorithm [21] to GMM para-
meters estimation, and thus developed the GMM-EM framework.
Leemput et al. [11] proposed an explicit parametric model to
estimate voxel labels and used a brain atlas to represent the prior
knowledge. Besides the EM algorithm, evolutionary techniques,
such as the genetic algorithm (GA) [22], have also been applied to
GMM parameter estimation [23]. Tohka et al. [24] proposed a real
coded GA with new permutation operator specifically designed for
GMM parameter estimation. In spite of their abundance applica-
tions, GMM-based statistical approaches usually have limited
accuracy, which can be largely ascribe to the following three major
causes.

First, classifying brain voxels into tissues of interest is essen-
tially different from other pattern classification problems in that
the prior probability of a voxel belonging to each tissue is largely
determined by its location. However, GMM lacks the mechanism
to use such prior anatomical knowledge for brain MRI image
segmentation. To remedy this, Greenspan et al. [25] incorporated
the spatial constraints into the GMM through employing a large
number of Gaussian components to represent each tissue. Nguyen
and Wu [26] proposed a fast and robust spatially constrained
Gaussian mixture model and directly applied the EM algorithm to
model optimization. Nikou et al. [27] adopted the Markov random
field (MRF) model to characterize the spatial smoothness and
included it in the process of maximizing the posterior probability
of voxel labels given the observed MRI data. Zhang et al. [28]
employed the hidden MRF (HMRF) model to explore the spatial
information embedded in MRI images.

Second, the bias field, also referred to as the intensity non-
uniformity (INU), renders a challenging task for brain MRI image
segmentation [29]. It arises from the imperfections in the radio-
frequency coils or problems associated with the acquisition
sequences, and usually results in a shading effect across the image
[30,31]. Generally, the bias field is assumed to be a multiplicative
component of the observed brain MRI image and varies slowly in
the entire image domain [32]. Therefore, it is safe to assume that
the bias field can be ignored within a small image patch. Based on
this assumption, kernel techniques have been used to construct
local statistical models, each of which characterizes the MRI data
in the neighborhood of a voxel, instead of the entire image [33–
36]. Chen et al. [34] replaced the original Euclidean distance with a
kernel-induced distance and supplemented the objective function
with a spatial penalty term, which models the spatial continuity
compensation. Liao et al. [35] developed a spatially constrained
fast kernel clustering algorithm to improve the computational
efficiency. Li et al. [36] introduced the local binary fitting (LBF)
energy into the energy functional of region-based active contour
models to handle the intensity inhomogeneity by drawing upon
local intensity means. Wang et al. [37] introduced more compli-
cated statistical characteristics of local intensities based on the LBF
model by describing the local information with Gaussian dis-
tributions, and thus proposed the local Gaussian distribution fit-
ting (LGDF) model. However, since a model will be estimated for
each voxel, the local model-based approaches are generally time-
consuming.

Last but not least, each 3D brain MRI image contains millions of
voxels, whose values distribute with very complex structures due
to the existence of noise, INU, partial volume effect (PVE) and
other artifacts. Therefore, the statistical assumption that the voxel
values from each tissue type are sampled independently from an
identical Gaussian distribution is usually less valid for MRI images.
To address this issue, other mathematical tools, such as the fuzzy
set theory [38], have been utilized [39,40]. Moreover, statistical
models have been combined with the fuzzy set theory to form the
so-called probabilistic fuzzy models for describing the uncertainty

embedded in brain MRI data. Tran et al. [41] proposed the fuzzy
GMM model to improve parameter estimation. Zeng et al. [42]
developed the type-2 fuzzy GMM model for density modeling and
classification. Although the fuzzy theory provides another per-
spective on modeling the uncertainty, it can hardly overcome the
essential drawbacks of statistical approaches.

Recently, the variational Bayes inference has been introduced
to learn statistical models [43–45]. Variational approaches assume
that statistical parameters are also stochastic variables, and hence
have the flexibility to handle the complex distribution of voxel
values. In these approaches, the posterior distribution of both
statistical parameters and latent voxel labels can be inferred by
using the variational EM (VEM) algorithm [44]. Although the
variational Bayes inference can effectively avoid overfitting, infer-
ring the posterior distribution is computationally more complex
than estimating GMM parameters. Therefore, when applying it
brain MRI image segmentation, it is almost impossible to build a
variational model for every voxel.

1.2. Outline of our work

In this paper, we introduce variational Bayesian inference to
brain MRI image segmentation, and thus propose an automated
segmentation algorithm based on learning local variational Gaus-
sian mixture (LVGM) models. To cope with the complexity and
dynamic nature of MRI images, we assume the parameters of
Gaussian models that represent the distribution of voxel values are
also stochastic variables and replace the traditional model esti-
mation with variational Bayesian inference. To address the chal-
lenges raised by INU, we use small MRI volumes sampled from the
original image to train a relatively large number of LVGM models
and avoid voxel-wised estimation of local models. We also con-
struct a co-registered probabilistic brain atlas for each MRI image
to incorporate the prior knowledge about brain anatomy into the
segmentation process. Therefore, the proposed LVGM learning
algorithm combines the merits of atlas-based and statistical
approaches. We have evaluated our algorithm against five com-
monly used brain MRI image segmentation methods on both
synthetic and clinical studies.

2. Variational Bayesian inference

For a dataset X ¼ xsARD : s¼ 1;2;⋯;N
n o

, each data xs is
assumed to be drawn independently from one of K Gaussian dis-
tributions N μk;Σk

� �
with a prior probability ωk. All statistical

parameters, denoted by Θ¼ ωk;μk;Σk:1rkrK
� �

, are further
assumed to be stochastic variables that follow the Dirichlet dis-
tribution and independent Gaussian–Wishart distribution,
respectively. Let the latent class labels of observed data be denoted
by Z¼ zsAR : s¼ 1;2;⋯;Nf g. The complete-data likelihood p
X; Z;Θ
� �

can be calculated as

p X; Z;Θ
� �¼ p XZ;μ;Λ

� �
p Zωð Þp ωð Þp μ;Λ

� � ð1Þ
where Λk ¼Σ�1

k is the precision matrix.
Instead of estimating the posterior probability of latent voxel

labels Z, the variational Bayesian inference aims to infer a posterior
distribution p Z;ΘX

� �
by introducing a variational distribution

q Z;Θ
� �

to approximate it. For any choice of q Z;Θ
� �

, the following
decomposition of the model evidence lnp Xð Þ holds [44]

lnp Xð Þ ¼ KL q p
�� ÞþL qð Þ� ð2Þ

where

KLðq p
�� Þ ¼ �∬ q Z;Θ

� �p Z;ΘX
� �
q Z;Θ
� � dZdΘ ð3Þ
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