
Towards characterization of driver nodes in complex network
with actuator saturation

Mahaveer Singh a, Ram Niwash Mahia b, Deepak M. Fulwani b,n

a Centre for System Science, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan-342011, India
b Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan-342011, India

a r t i c l e i n f o

Article history:
Received 29 November 2015
Received in revised form
19 January 2016
Accepted 7 March 2016
Available online 28 March 2016

Keywords:
Control of complex network
Driver nodes
Region of attraction

a b s t r a c t

The paper proposes a theory and an algorithm to characterize driver node (control node) of a complex
network. The proposed algorithm identifies an appropriate driver node when multiple options are
available to select a driver node. The method is based on concept of maximization of stability regions. A
realistic situation where driver node has limited actuating capability is considered. The proposed control
law considers actuator saturation a priori and also ensures a specified convergence rate. Formation
control in robotic network and numeric examples are used to verify the theoretical developments.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

A complex network can be defined as an entity (system) with
interlinked nodes. A node can represent: a switch in a communication
network, a document in citation network, a disease gene in the
human disease network to mention a few examples. Two nodes are
said to be interlinked when they share or exchange some kind of
information. For example, two switches exchange voice/data signals, a
document cites other documents, or genes associated with similar
disorders. State of the network is given by the current state values of
each node that can change over time. The state value of a node can
represent: a magnetic or electric field of the inductor or capacitor in
an electrical circuit, compression/expansion of the spring in the
spring-mass system, and so forth.

The recent control theoretic developments of complex networks
provide a detailed behavioral analysis of the complex networks [1–10].
Controllability property is investigated by modeling a complex net-
work as a linear time invariant system; adjacency matrix is used as
the system matrix. Authors in [11] have shown the relation between
the network structure and its controllability index for the directed
networks and also presented an optimized control design. Recently,
Wen et al. [12] have shown that the global synchronization control
problem of switching complex networks can be solved by using
topology dependent multiple Lyapunov functions. Liu et al. [1]
developed a minimum input theory to characterize the structural
controllability of directed networks using minimum set of driver

nodes to control the network. There are many interesting work on
dynamics of complex cellular network see [13–17] and the references
therein. Authors in [5] proposed trade-off between the driver nodes
and the control energy as a function of the network dynamics using
the smallest eigenvalue of the Controllability Gramian. In recent years
there have been quite a few work devoted to this problem [1,12,18–
21] and see the references therein.

The complex network can be controlled by driver node(s).
Minimum number of driver nodes required to control a network is
fixed [1]. However, these nodes are not unique. For a network, in
general, multiple options exist to choose a driver node. The
existing work available in literature do not characterize driver
nodes. Furthermore, for any real network driver node can have
only limited actuation capacity. While considering the problem of
controlling a complex network, it is important to consider prac-
tical limitations of the driver nodes. Driver nodes do not have
infinite (unlimited) actuation capability, i.e. maximum input a
driver node can provide is limited. When actuator has limited
capacity, control objectives may not be achieved, if this limitation
is not considered a priori. This problem becomes more complex
when the adjacency matrix has unstable eigenvalues; even the
stability cannot be guaranteed in this situation. With unstable
eigenvalues of the adjacency matrix of a complex network and
limited actuation capabilities, the region in state space, where
stability is guaranteed, is finite. This Region Of Attraction (ROA)
depends upon the number of open-loop unstable eigenvalues of
the system [22] as well as choice of driver node and control law.
This work characterizes driver nodes and proposes a theory and an
algorithm such that a right driver node, among many, can be
identified to maximize the ROA for a given linear feedback control
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law. Furthermore, it ensures a specified rate of convergence of
states. The ROA is described by contractively invariant ellipsoid in
n-dimensional state space. In the context of linear systems with
actuator saturation, many excellent work exists [22–31] and see
the references therein.

In this work, we have addressed two important issues, first is
regarding selection of a driver node and in the second, we consider
driver node limitation. We propose a theory and an algorithm to select
a driver node for a given feedback control law such that the ROA
corresponding to this driver node maximizes while ensuring the
specified rate of convergence. The proposed work uses Linear Quad-
ratic (LQ) control law with a fixed convergence rate. In [32,33], we
have proposed algorithms to select the right driver nodes of complex
networks and multi-agent systems which maximizes the corre-
sponding ROA, however, a fixed convergence rate was not considered
a priori. The maximization of ROA as well as the fixed convergence
rate of states are important requirements in the control problem of
complex networks. Application domain of the proposed theory and
algorithm is as diverse as social networks to biological networks. The
proposed algorithm can be used to select the right driver node of
robotic networks, mobile sensor networks, gene regulatory networks,
power grid networks, social interactions networks, etc., which max-
imizes the ROA of the network while ensuring the specified rate of
convergence of states. To the best of authors knowledge, this problem
has not been addressed so far.

The outline of this paper is as follows. In Section 2, modeling of
a complex network and existing results are briefly summarized. In
Section 3, we have used a motivational example of unstable net-
work with actuator saturation to explain the concept. Main results
for identifying the driver node of complex network with max-
imum region of attraction are discussed in Section 4 and two
numerical examples are also simulated to verify the theoretical
developments in Section 5, followed by an application of robot
formation control in Section 6. Conclusion of the work is sum-
marized in Section 7.

2. Mathematical modeling and preliminaries

This section is divided into two parts. In the first part, we have
presented mathematical model of a complex network with
actuator saturation and in the second part, some existing results of
LTI systems with actuator saturation are recalled.

2.1. Modeling of complex network with saturated actuator

A complex network is a set of nodes (n) with some rules of
interactions between them and can be represented by a graph
G≔ðV ; EÞ, where V≔fv1; v2;‥; vng and EDV � V are the sets of
vertices and edges, respectively. Interconnections of graph G≔ðV ;
EÞ with n nodes is mathematically represented by adjacency
matrix (A) with n rows and n columns, where aijAR, i¼ j¼ 1;2;‥
;n is the weight of the edge eij. Let us assume that the network (G),
subjected to actuator saturation, is independently controllable by
each of the inputs (nodes) ui from the set U ¼ fu1;u2;…;umg;mrn.

Consider a complex network (G) with input ui, let us designate
corresponding input matrix as Bi, with this, dynamics of the net-
work (G) with actuator saturation can be written as

_xðtÞ ¼ AxðtÞþBisatðuiðtÞÞ ð1Þ
where AARn�n is the adjacency matrix, xARn state vector and Bi

ARn�1 input matrix corresponding to control input uiAR, for
i¼ 1;2;…;m, of the network. The saturation function ‘sat’ is
defined as sat : R-R, i.e. satðuiðtÞÞ ¼ signðuiðtÞÞminfui;max; juiðtÞj g,
where ui;max40, 8 i¼ 1;2;…;m is saturation limit of ith control

input of the network and juiðtÞj rui;max. Without loss of gen-
erality let us assume ui;max ¼ 1, 8 i¼ 1;2;…;m.

2.2. Existing results of LTI systems with saturated actuator

Consider a single input LTI system subject to actuator satura-
tion

_x ¼ AxþBu; xARn;uAR; juj1r1 ð2Þ
Zhou and Duan [30] considered the following objective func-

tion for the linear system (2) in the absence of actuator saturation:

JðuÞ ¼
Z 1

0
eγtu2ðtÞ dt ð3Þ

and found that J(u) is minimized if and only if there exists a
PðγÞ40, which satisfies (5) and the corresponding optimal control
is given by (4) with the convergence rate of the closed-loop system
is no less than e

� γt
2 .

A control law to minimize J(u) is given as

u¼ �BTPðγÞx ð4Þ
here PðγÞ40, a positive definite matrix, is the solution of the fol-
lowing Algebraic Riccati Equation (ARE):

ATPðγÞþPðγÞA�PðγÞBR�1BTPðγÞþQ ðγÞ ¼ 0 ð5Þ
where Q ðγÞ ¼ γPðγÞ40 is a positive definite matrix, γ40 and R¼1.

Assume that the linear system (2) is controllable and let VðxÞ
¼ xTPðγÞx be the Lyapunov candidate, where PðγÞ40 is a positive
definite matrix obtained from (5). Then the level sets associated
with V(x) are the solid ellipsoids εðPðγÞ;ρðγÞÞ ¼ fx : xTPðγÞxrρðγÞg,
where ρðγÞ is a positive number. The ellipsoids εðPðγÞ;ρðγÞÞ are said
contractively invariant if the time derivative of V(x) along the
trajectory of the system (2), _V ðxÞo0, 8xAεðPðγÞ;ρðγÞÞ⧹f0g for
some u(t) [30].

Proposition 1 (Zhou and Duan [30]). Assume that for a linear sys-
tem (2), (A,B) controllable and PðγÞ40 satisfies (5). Then, under the
linear feedback control law (4), the following statements hold

(a) For γ4maxf0;2λmaxð�AÞg, matrix (A�BBTPðγÞ) is asymptoti-
cally stable and PðγÞ is monotonically increasing with respect to
γ.

(b) The ellipsoids εðPðγÞ;ρðγÞÞ can be made contractively invariant if
and only if ρðγÞoρ⋆ðγÞ. Here

ρ⋆ðγÞ ¼ 4BTPðγÞB
ðBTPðγÞB�γÞ2

ð6Þ

where

BTPðγÞB¼ nγþ2
Xn
i ¼ 1

λiðAÞ ð7Þ

and nZ2 is the order of the system.

3. Motivating example

Consider an anti-stable (all eigenvalues of adjacency matrix are
positive) network of three nodes as shown in Fig. 1. The adjacency
matrix for the network can be computed as

A¼
0:5 0:2 0:4
0:1 0:3 �0:7
�0:9 0:5 0:8

2
64

3
75

Table 1 summarizes input matrix corresponding to different
driver nodes. The given network is controllable by each of the
nodes acting independently. Eigenvalues of the matrix A are
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