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a b s t r a c t

Learning Analytics (LA) has a major interest in exploring and understanding the learning process of
humans and, for this purpose, benefits from both Cognitive Science, which studies how humans learn,
and Machine Learning, which studies how algorithms learn from data. Usually, Machine Learning is
exploited as a tool for analyzing data coming from experimental studies, but it has been recently applied
to humans as if they were algorithms that learn from data. One example is the application of Rademacher
Complexity, which measures the capacity of a learning machine, to human learning, which led to the
formulation of Human Rademacher Complexity (HRC). In this line of research, we propose here a more
powerful measure of complexity, the Human Algorithmic Stability (HAS), as a tool to better understand
the learning process of humans. The experimental results from three different empirical studies, on more
than 600 engineering students from the University of Genoa, showed that HAS (i) can be measured
without the assumptions required by HRC, (ii) depends not only on the knowledge domain, as HRC, but
also on the complexity of the problem, and (iii) can be exploited for better understanding of the human
learning process.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the emergence of Technology-Enhanced Learning (TEL)
systems and automatic analysis of educational data, many efforts
have been carried out to enhance the learning experience [1,2]. For
this reason, Learning Analytics (LA) and Educational Data Mining
have recently gained a lot of attention as one of their major
interest is to explore the way humans learn [3–5]. New advances
in LA enable measuring, collecting and analyzing data about
learners and their contexts and allow exploring the behavior of
people while learning (e.g. through Machine Learning models),
opening the door towards optimized and personalized education
[6–9]. LA is a multi-disciplinary field which is tightly connected to
Statistics and ML on one side and to Cognitive Science (COGS) and
Pedagogy on the other side [10,11].

Machine Learning (ML) is a field of research which develops
and studies algorithms that can learn from and make predictions
on data [12]. Such algorithms, used as tools in LA, build models
from data in order to make data-driven predictions or decisions.
ML offers tools for solving many real world problems [13–16]:

classification, regression, clustering, online learning, semi-
supervised learning, reinforcement learning, etc. [12,17–19].
According to [20] there are three ways of using models of educa-
tional processes: the first one includes models used as scientific
tools to understand an educational situation, such as using models
to predict the student academic success [21]. In the second one,
models are used as a component of educational artefacts such as
student modeling and its application in a TEL environment [22,23]
or integrating the model of student problem-solving into a TEL
system with the aim to personalize and adapt educational mate-
rials to their needs [24]. Finally, the third one includes models
used as basis for design of TEL systems [25].

In addition to proposing new algorithms and tools, ML devel-
ops different methods for measuring the effectiveness of a learn-
ing process. In particular, ML studies the learning ability of an
algorithm in order to avoid data memorization and to improve its
generalization performance, which is the ability to learn the tar-
geted concept effectively [26]. Examples of techniques for asses-
sing the performance of a learning algorithm are: Hypothesis
Space-based methods [27] (based on the VC-Dimension [26],
Rademacher Complexity (RC) [28–30], and PAC Bayes Theory
[31,32]) and Algorithm-based methods [33] (based on Compres-
sion Bounds [34], and Algorithmic Stability (AS) Theory [35,36]).
Thanks to these approaches, many valuable parameters that
describe how a particular machine learns can be quantified. For
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example, it is possible to rigorously measure the generalization
performance of a learned model.

While ML studies learning algorithms, COGS studies and ana-
lyses how learning takes place in humans [37–39]. In this context,
humans can be considered as information processing systems (as
suggested in [40]) with a high learning potential and learning is a
permanent process that is regulated by optimizing the complexity
of the learning context, based on actions and mental schemata of
humans [41]. Concept Learning (CL) is the area of COGS that
explores how concepts are attained in humans (Human Learning –

HL). Various approaches exist in categorising concepts and how
they are attained [42,43]. One approach is to consider concepts as
mental representations which help to identify and separate
objects, events, and relationships. Another approach considers
that concepts are learned inductively even from sparse and noisy
evidences. In addition, concepts can be formed by combining other
simpler concepts, and their meanings are derived from the ones of
their constituents. Various theories integrate different approaches
of CL: for instance, Exemplar Theory [44] suggests that the cate-
gorization takes place by the proximity of the new stimulus to the
members of the category that one has observed, and by compar-
ison of similarities, the label is assigned to the stimulus. Another
theory, called Prototype Theory [45], explains that categorization
takes place in a similar way as Exemplar Theory, while the com-
parison is carried out to the average of category members not to a
specific member. In this case, at first, the attributes of members of
a category are derived (named prototypes), then categorization is
done by considering the similarity to the generated prototypes. In
addition to these theories, researchers discovered that rule-based
theories are important in the initial formation of categories
[37,46]: first the distinguishing attributes of new items are
extracted from the category, then Examplar or Prototype theory,
for categorizing distinct items, is applied. In this approach, con-
cepts are constructed by combination [47]. In particular, a concept
is represented by some rule that determines whether a stimulus
belongs to a category [48]. Thus, humans try to find a rule (learn a
model) when being confronted with a new example.

The latest approach towards human rule-based learning has
been a motivation for CL to benefit from the research of other
fields like Artificial Intelligence, Information Theory, and ML. In
this context, the cross between HL and ML [49–51] leads to
development of sophisticated formal models of CL [48,52–54]. For
instance, [55] measures the ability of humans in Category Learning
by applying Bayesian approaches in iterative learning. In this
context, a human learns a concept and produces a hypothesis on
the given data, then, another human learns the previously devel-
oped hypothesis and generates a new one. This method was
adopted for identifying the inductive biases in humans. In another
study [56], the difficulty of concepts in relation with HL is
exploited. In this context, the subjective difficulty of boolean
concepts for humans is measured, and it is shown that the sub-
jective difficulty is proportional to the complexity of boolean
statements (length of the statement). Thus, by knowing the
complexity of the logical structure of concepts, it is possible to
predict how difficult that concept is for humans. Other examples
are [57,58] where ML Theory, which helps to understand the
learning ability of ML algorithms, has been used to explore HL.

Our main contribution is to build a connection between ML and
HL. In particular, we apply ML methods to measure the capacity of
students to find meaningful rules given various problems. Mea-
suring the ability of a human to capture information rather than
simply memorizing can be the key to optimize and improve HL. In
this sense, the parallelismwith ML is straightforward: for example,
several approaches in the last decades dealt with the development
of measures to assess the generalization ability of learning algo-
rithms in order to minimize risks of overfitting (memorization). As

a consequence, merging ML studies on the generalization ability
estimation and HL has been proposed by some researchers. In
particular, Zhu et al. [57] propose the application of ML approaches
[59] to estimate the human capability of extracting knowledge
(Human Rademacher Complexity – HRC). Unfortunately, (H)RC
requires a set of models to be aprioristically defined, which
includes the models to be explored by the learner (being either an
algorithm or a human) [33]. While this hypothesis is not always
satisfied by ML methods (e.g. k-Nearest Neighbors [60]), aprior-
istically defining a list of alternative models for humans is an even
tougher task [61,62]. This leads to formulating further assump-
tions [57], which do not often hold in practice. As an alternative,
we propose to exploit AS [35,33] in order to compute the Human
Algorithmic Stability (HAS), which does not rely on the definition
of a set of models and does not require any additional assump-
tions. In this study, we comparatively benchmark HRC and HAS, by
designing experiments to analyze the way a group of students
learns the tasks with different difficulties, and we compare the
two approaches to verify which one is the most informative for
getting more insights into HL. To reach this purpose, three differ-
ent experiments were performed from October 2014 till May 2015
with 606 students of various engineering majors from the Uni-
versity of Genoa, Italy. We generated unique questionnaires for
every student to measure HRC and HAS over 7 groups of students,
as described in the next sections. Filled questionnaires were col-
lected, digitized, anonymized, and analyzed. Our results show that
HAS is influenced by the nature and the complexity of the problem
to learn. Moreover, contrarily to HRC, HAS is also able to capture
the fast-learning ability of a human when dealing with simple
problems: this allows providing new perspectives with reference
to the human tendency to overfit training data depending on the
nature of the problem faced. These results can thus function as a
bridge between ML and HL, for the measure of the propensity of
the learner towards CL versus simple memorization. This work
completes and extends the preliminary results reported in [58].

The paper is structured as follows: Section 2 presents the
theoretical ML framework, Section 3 relates the ML framework to
HL, Section 4 describes our experimental design, Section 5 reports
the results of our study and finally the conclusions of the paper are
drawn in Section 6.

2. Rademacher Complexity and algorithmic stability in
machine learning

Let us consider the classical binary classification framework
[26]. Let X and Y ¼ 71f g be, respectively, an input and an output
space. We consider a set of labeled independent and identically
distributed (i.i.d.) data Sn : Z1;…; Znf g of size n, where
ZiA 1;…;nf g ¼ ðXi;YiÞ, with XiAX and YiAY, sampled from an
unknown distribution μ over X � Y. We also define two modified
training sets: S⧹i

n , where the i-th element is removed and Si
n,

where the i-th element is replaced with Z0
i, which is another i.i.d.

pattern sampled from μ:

S⧹i
n : Z1;…; Zi�1; Ziþ1;…; Zn

� �
; Si

n : Z1;…; Zi�1; Z
0
i; Ziþ1;…; Zn

� �
: ð1Þ

A learning algorithm A maps Sn into a function f : ASn from X to
Y. In particular, A allows designing f AF and defining the
hypothesis space F , which is generally unknown.

Even if often not specified [35,33], there are some properties
that the algorithm A must satisfy in order to ensure the validity of
the results of the next sections. In particular, we consider only
deterministic algorithms. It is also assumed that the algorithm A is
symmetric with respect to Sn, i.e. it does not depend on the order
of the elements in the training set.
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