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a b s t r a c t

We study in this paper the consequences of using the Mean Absolute Percentage Error (MAPE) as a
measure of quality for regression models. We prove the existence of an optimal MAPE model and we
show the universal consistency of Empirical Risk Minimization based on the MAPE. We also show that
finding the best model under the MAPE is equivalent to doing weighted Mean Absolute Error (MAE)
regression, and we apply this weighting strategy to kernel regression. The behavior of the MAPE kernel
regression is illustrated on simulated data.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Classical regression models are obtained by choosing a model
that minimizes an empirical estimation of the Mean Square Error
(MSE). Other quality measures are used, in general for robustness
reasons. This is the case of the Huber loss [1] and of the Mean
Absolute Error (MAE, also know as median regression), for
instance. Another example of regression quality measure is given
by the Mean Absolute Percentage Error (MAPE). If x denotes the
vector of explanatory variables (the input to the regression model),
y denotes the target variable and g is a regression model, the MAPE
of g is obtained by averaging the ratio j gðxÞ�yj

j yj over the data.
The MAPE is often used in practice because of its very intuitive

interpretation in terms of relative error. The use of the MAPE is
relevant in finance, for instance, as gains and losses are often
measured in relative values. It is also useful to calibrate prices of
products, since customers are sometimes more sensitive to rela-
tive variations than to absolute variations.

In real world applications, the MAPE is frequently used when
the quantity to predict is known to remain way above zero. It was
used for instance as the quality measure in a electricity con-
sumption forecasting contest organized by GdF ecometering on
datascience.net.1 More generally, it has been argued that the MAPE

is very adapted for forecasting applications, especially in situations
where enough data are available, see e.g. [2].

We study in this paper the consequences of using the MAPE as
the quality measure for regression models. Section 2 introduces
our notations and the general context. It recalls the definition of
the MAPE. Section 3 is dedicated to a first important question
raised by the use of the MAPE: it is well known that the optimal
regression model with respect to the MSE is given by the regres-
sion function (i.e., the conditional expectation of the target vari-
able knowing the explanatory variables). Section 3 shows that an
optimal model can also be defined for the MAPE. Section 4 studies
the consequences of replacing MSE/MAE by the MAPE on capacity
measures such as covering numbers and Vapnik–Chervonenkis
dimension. We show in particular that MAE based measures can
be used to upper bound MAPE ones. Section 5 proves a universal
consistency result for Empirical Risk Minimization applied to the
MAPE, using results from Section 4. Finally, Section 6 shows how
to perform MAPE regression in practice. It adapts quantile kernel
regression to the MAPE case and studies the behavior of the
obtained model on simulated data.

2. General setting and notations

We use in this paper a standard regression setting in which the
data are fully described by a random pair Z ¼ ðX;YÞ with values in
Rd � R. We are interested in finding a good model for the pair, that
is a (measurable) function g from Rd to R such that g(X) is “close
to” Y. In the classical regression setting, the closeness of g(X) to Y is
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measured via the L2 risk, also called the mean squared error (MSE),
defined by

L2ðgÞ ¼ LMSEðgÞ ¼ EðgðXÞ�YÞ2: ð1Þ
In this definition, the expectation is computed by respect to the
random pair (X,Y) and might be denoted EX;Y ðgðXÞ�YÞ2 to make
this point explicit. To maintain readability, this explicit notation
will be used only in ambiguous settings.

Let m denote the regression function of the problem, that is the
function from Rd to R given by

mðxÞ ¼ EðY jX ¼ xÞ: ð2Þ
It is well known (see e.g. [3]) that the regression function is the
best model in the case of the mean squared error in the sense that
L2ðmÞminimizes L2ðgÞ over the set of all measurable functions from
Rd to R.

More generally, the quality of a model is measured via a loss
function, l, from R2 to Rþ . The point-wise loss of the model g is
lðgðXÞ;YÞ and the risk of the model is

LlðgÞ ¼ EðlðgðXÞ;YÞÞ: ð3Þ
For example, the squared loss, l2 ¼ lMSE is defined as l2ðp; yÞ ¼
ðp�yÞ2. It leads to the LMSE risk defined above as Ll2 ðgÞ ¼ LMSEðgÞ.

The optimal risk is the infimum of Ll over measurable functions,
that is

Lnl ¼ inf
gAMðRd ;RÞ

LlðgÞ; ð4Þ

where MðRd;RÞ denotes the set of measurable functions from Rd

to R. As recalled above we have

LnMSE ¼ Ln2 ¼ Lnl2 ¼ EX;Y ðmðXÞ�YÞ2 ¼ EX;Y ðEðY jXÞ�Y
� Þ2�

As explained in the introduction, there are practical situations
in which the L2 risk is not a good way of measuring the closeness
of g(X) to Y. We focus in this paper on the case of the Mean
Absolute Percentage Error (MAPE) as an alternative to the MSE. Let
us recall that the loss function associated to the MAPE is given by

lMAPEðp; yÞ ¼
jp�yj
jyj ; ð5Þ

with the conventions that for all aa0, a
0¼1 and that 0

0¼ 1. Then
the MAPE-risk of model g is

LMAPEðgÞ ¼ LlMAPE
ðgÞ ¼ E

jgðXÞ�Y j
jY j

� �
: ð6Þ

Notice that according to Fubini's theorem, LMAPEðgÞo1 implies in
particular that EðjgðXÞj Þo1 and thus that interesting models
belong to L1ðPXÞ, where PX is the probability measure on Rd

induced by X.
We will also use in this paper the mean absolute error (MAE). It

is based on the absolute error loss, lMAE ¼ l1 defined by
lMAEðp; yÞ ¼ jp�yj . As other risks, the MAE-risk is given by

LMAEðgÞ ¼ LlMAE
ðgÞ ¼ EðjgðXÞ�Y j Þ: ð7Þ

3. Existence of the MAPE-regression function

A natural theoretical question associated to the MAPE is whe-
ther an optimal model exists. More precisely, is there a function
mMAPE such that for all models g, LMAPEðgÞZLMAPEðmMAPEÞ?

Obviously, we have

LMAPEðgÞ ¼ EX;Y E
jgðXÞ�Y j

jY j

����X� �� �
:

A natural strategy to study the existence of mMAPE is therefore to
consider a point-wise approximation, i.e. to minimize the condi-
tional expectation introduced above for each value of x. In other

words, we want to solve, if possible, the optimization problem

mMAPEðxÞ ¼ arg min
mAR

E
jm�Y j
jY j

����X ¼ x
� �

; ð8Þ

for all values of x.
We show in the rest of this section that this problem can be

solved. We first introduce necessary and sufficient conditions for
the problem to involve finite values, then we show that under
those conditions, it has at least one global solution for each x and
finally we introduce a simple rule to select one of the solutions.

3.1. Finite values for the point-wise problem

To simplify the analysis, let us introduce a real valued random
variable T and study the optimization problem

min
mAR

E
jm�T j
jT j

� �
: ð9Þ

Depending on the distribution of T and of the value of m, JðmÞ ¼
E jm�T j

j T j

	 

is not always a finite value, excepted for m¼0. In this

latter case, for any random variable T, Jð0Þ ¼ 1 using the above
convention.

Let us consider an example demonstrating problems that might
arise for ma0. Let T be distributed according to the uniform dis-
tribution on ½�1;1�. Then

JðmÞ ¼ 1
2

Z 1

�1

jm�t j
j t j dt:

If mA �0;1�, we have

JðmÞ ¼ 1
2

Z 0

�1
1�m

t

	 

dtþ1

2

Z m

0

m
t
�1

	 

dtþ1

2

Z 1

m
1�m

t

	 

dt;

¼ 1�m�m
2

Z 1

m

1
t
dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

finite part

þm
2

Z m

0

1
t
dt�

Z 0

�1

1
t
dt

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

þ1

;

¼ þ1:

This example shows that when T is likely to take values close to 0,
then JðmÞ ¼1 whenever ma0. Intuitively, the only situation that
leads to finite values is when 1

j T j as a finite expectation, that is
when the probability that jT j is smaller than ϵ decreases suffi-
ciently quickly when ϵ goes to zero.

More formally, we have the following proposition.

Proposition 1. JðmÞo1 for all m if and only if

1. PðT ¼ 0Þ ¼ 0,
2. and

X1
k ¼ 1

kP

0@TA

#
1

kþ1
;
1
k

#1Ao1;
X1
k ¼ 1

kP TA �1
k
; � 1

kþ1

"" !
o1:

 
ð10Þ

If any of those conditions is not fulfilled, then JðmÞ ¼1 for all ma0.

Proof. We have

JðmÞ ¼ E IT ¼ 0
jm�T j
jT j

� �
þE IT40

jm�T j
jT j

� �
þE ITo0

jm�T j
jT j

� �
:

If PðT ¼ 0Þ40 then for all ma0, JðmÞ ¼1. Let us therefore con-
sider the case PðT ¼ 0Þ ¼ 0. We assume that m40, the case mo0
is completely identical. We have

JðmÞ ¼ E IT40
jm�T j
jT j

� �
þE ITo0

jm�T j
jT j

� �
;
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