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a b s t r a c t

Supervised learning from annotated data is becoming more challenging due to inherent imperfection of
training labels. Previous studies of learning in the presence of label noise have been focused on label
noise which occurs randomly, while the study of label noise that is influenced by input features, which is
intuitively more realistic, is still lacking. In this paper, we propose a new, generalised label noise model
which is able to withstand the negative effect of random label noise and a wide range of non-random
label noises. Empirical studies using a battery of synthetic data and four real-world datasets with
inherent annotation errors demonstrate that the proposed generalised label noise model improves, in
terms of classification accuracy, upon existing label noise modelling approaches.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

A classification problem is a task where one wants to infer a {0,1}-
valued function ĥ : X-Y using a finite sample D¼ ðxn; ynÞNn ¼ 1 :

xnAX ; ynAY ¼ f0;1g drawn from some joint distribution on X � Y.
One can then use the estimated ĥ to predict y for any new data x
drawn from the same distribution. Here x is an m-dimensional fea-
ture vector and y is its label assignment. In an idealised scenario, yn
are assumed to be perfect. However, in reality, there is a possibility
that the true label, yn, is corrupted by some unknown factor so that
we observe a flipped noisy ~yn instead of the true yn. The quality of
training labels has been theoretically [25,9,13,28,18] and empirically
[26,15] shown to effect the performance of a classifier in a wide
range of classification problems. Ensuring a close to perfect labelling
turns out to be too costly in practice, especially with the scale and
complexity of today's classification tasks. For example, the recent
crowdsourcing practice for obtaining labelled training data cheaply
and quickly could introduce label noise into the data set [30,29].
Label errors can also be found in complex classification tasks such as
the classification of biomedical data [17,27,5,33] and the classification
of textual data [21,20,2].

Class label noise can be loosely categorised into two types:
random and non-random noise. The random label noise occurs
independently of the input features [22]. The probability of label
flipping is assumed to be class-conditional and is shared among all
members in the same class. A non-random noise, on the other

hand, is a noise which is influenced by the input features and
hence is more general [23]. In the non-random noise case, the
label flipping rates of all the members in the class are not neces-
sarily equal and can vary within the class. Also, the non-random
noise may be encountered more often than random noise in real-
world problems. Pictorial illustrations of the two types on label
noise on two dimensional data are given in Fig. 1a and b.

Interestingly, existing approaches to learning from noisy labels
have been focused on random noise due to simplicity. Notable
model-based robust classifiers include robust Kernel Fisher Dis-
criminant [24], robust Normal Discriminant Analysis [3] and
robust Logistic Regression [4,29], all of which are based on a
weighed surrogate loss function. Relating to the above are the
methods which utilise the so-called ‘soft label’ to quantify the
degree of uncertainty of the training labels [12,14,10]. However,
the study of the latter type of label noise is still scarce [23,8,31].
The reader is referred to [16] for an extensive survey on label noise
problems.

Label noise modelling can be done at several levels of granu-
larity. At the finest level, a noise model is associated with each
data point. For example, a robust Logistic Regression proposed in
[31] treats label noise of each training instance individually by
incorporating a shift parameter into the sigmoid function. The
parameter's role is to control the cutting point of the posterior
probabilities of the two classes. This kind of local approximation is
seemingly an ideal approach for the problem as it provides all the
flexibility needed for capturing variations of noises. However, the
method needs to estimate a huge number of noise parameters
which unfortunately grows with the number of training instances.
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At the other end of the spectrum, a global statistic can be used for
summarising the label flipping probabilities of all instances in the
same class. For example, the work in [24], which targets random
label noise, assumes that the instances in the class share the same
label flipping probability. This significantly reduces the number of
free parameters from OðNÞ to OðKÞ, where N is the number of
training instances and K is the number of classes. For this reason
the global approach is widely adopted for solving random label
noise problems [24,29,4]. Nonetheless, while the approach alle-
viates the curse of dimensionality, it is inevitably too restricted.

In this paper, we attempt to combine the advantages of the two
approaches by proposing a more general label noise model which
is flexible enough for dealing with both random and non-random
label noises and is also simple such that the number of parameters
is still merely of the order of the number of classes. We do this by
expressing label flipping probabilities by a parametric function.
We employ the probability density function of the exponential
distribution to model the likelihood of label flipping. This function
is chosen in order to capture noises in a scenario where points that
live closer to the decision boundary have relatively higher chance
of being mislabelled than those that live further away. Experi-
ments show that the proposed method is able to counter the
negative effect of the label noise while maintaining the compu-
tational feasibility of learning the model. We note that a similar
assumption namely, points lies close to class mean have lower
chance of being mislabelled has been investigated in the case of
the normal discriminant analysis [8]. However, the study focuses
on the theoretical aspect of the classifier while algorithmic solu-
tion for learning the model was not sufficiently described. In
contrast, in this work we formulate the mislabelling probability as
a function of distance from the decision boundary and propose a
robust logistic regression employing the new label noise model
together with an efficient algorithm to learn the robust model.

To sum up, the contributions of our work are the followings.

� We proposed a new label noise model which can deal with both
random label noise and example-dependent label noise.

� We developed a new robust Logistic Regression employing the
newly proposed noise model and devised an efficient algorithm
to learn the classifier.

� We extensively evaluated the usefulness of the proposed
method on a battery of synthetic datasets and real datasets
which genuinely contain annotation errors.

The rest of the paper is organised as follows. Section 2 intro-
duces the generalised label noise model, a new robust logistic
regression employing the new noise model and an efficient algo-
rithm to learn the classifier. Section 3 presents empirical evalua-
tions and discussions of the results while Section 4 concludes
the study.

2. The generalised label noise model

One of the principled ways for dealing with random label noise
problem is the use of a latent variable model [24,4]. The approach
represents the class posterior probability of the observed label
with a weighted posterior probability of the true class labels.
Under the latent variable model, the probability that the observed
label of a point xn is k is given by:

~P
k
n ¼

X
j

pð ~yn ¼ kjy¼ jÞ � pðy¼ jjxn;θÞ ð1Þ

Here pð ~y ¼ kjy¼ jÞ denotes a label flipping probability that the true
class label j was flipped into the observed class label k. Clearly, the
label flipping probability is class-conditional and is independent of
the input vector.

Arguably, such assumption is rather unrealistic for real-world
problems as input features can have some influence on the
occurrence of mislabelling, so the random latent variable model
may not be appropriate. To generalise the above noise model to
accommodate label noise which may depend on the input vector,
we redefine the label flipping probability to be a function of the
input vector, its class label and the parameters of the classification
model.

~P
k
n ¼

X
j

F ðxn; ~yn; yn ¼ j;θÞpðyn ¼ jjxn;θÞ ≕
X
j

F ðxn; ~yn; yn ¼ j;θÞP j
n

ð2Þ

where F ðxn; ~yn; yn ¼ j;θÞ ¼def pð ~yn ¼ kjyn ¼ j; xn;θÞ ¼ωjk
n . The function

F can be any function which best describes the nature of the label
flipping and has to satisfy the probabilistic constraint, i.e., out-
putting a value between zero and one. The proposed model will be
referred to as the generalised label noise model. Note that the
random label noise model used in [24,29] is a special case of the
above noise model, where F is defined to be a constant function. It
is worth mentioning that the selection of the noise function
depends highly on the knowledge of noise. It is very unlikely that

Fig. 1. Random noise occurs independently of the input features while non-random noise is influenced by the input features (in this case, there is less noise in the region
further away from the decision boundary).
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